DagSemProc.05171.5.pdf
- Filesize: 379 kB
- 34 pages
We discuss proof schemes, a kind of context-dependent proofs for logic programs. We show usefullness of these constructs both in the context of normal logic programs and their generalizations due to Niemela and collaborators. As an application we show the following result. For every cardinality-constraint logic program P there is a logic program P´ with the same heads, but with bodies consisting of atoms and negated atoms such that P and P´ have same stable models. It is worth noting that another proof of same result can be obtained from the results by Lifschitz and collaborators.
Feedback for Dagstuhl Publishing