Document Open Access Logo

On Probabilistic Time versus Alternating Time

Author Emanuele Viola

Thumbnail PDF


  • Filesize: 305 kB
  • 26 pages

Document Identifiers

Author Details

Emanuele Viola

Cite AsGet BibTex

Emanuele Viola. On Probabilistic Time versus Alternating Time. In Complexity of Boolean Functions. Dagstuhl Seminar Proceedings, Volume 6111, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2006)


Sipser and Gács, and independently Lautemann, proved in '83 that probabilistic polynomial time is contained in the second level of the polynomial-time hierarchy, i.e. BPP is in Sigma_2 P. This is essentially the only non-trivial upper bound that we have on the power of probabilistic computation. More precisely, the Sipser-Gács-Lautemann simulation shows that probabilistic time can be simulated deterministically, using two quantifiers, **with a quadratic blow-up in the running time**. That is, BPTime(t) is contained in Sigma_2 Time(t^2). In this talk we discuss whether this quadratic blow-up in the running time is necessary. We show that the quadratic blow-up is indeed necessary for black-box simulations that use two quantifiers, such as those of Sipser, Gács, and Lautemann. To obtain this result, we prove a new circuit lower bound for computing **approximate majority**, i.e. computing the majority of a given bit-string whose fraction of 1's is bounded away from 1/2 (by a constant): We show that small depth-3 circuits for approximate majority must have bottom fan-in Omega(log n). On the positive side, we obtain that probabilistic time can be simulated deterministically, using three quantifiers, in quasilinear time. That is, BPTime(t) is contained in Sigma_3 Time(t polylog t). Along the way, we show that approximate majority can be computed by uniform polynomial-size depth-3 circuits. This is a uniform version of a striking result by Ajtai that gives *non-uniform* polynomial-size depth-3 circuits for approximate majority. If time permits, we will discuss some applications of our results to proving lower bounds on randomized Turing machines.
  • Probabilistic time
  • alternating time
  • polynomial-time hierarchy
  • approximate majority
  • constant-depth circuit


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail