DagSemProc.08191.5.pdf
- Filesize: 378 kB
- 17 pages
We address graph decomposition problems that help the hybrid visualization of large graphs, where different graphic metaphors (node-link, matrix, etc.) are used in the same picture. We generalize the $X$-graphs of $Y$-graphs model introduced by Brandenburg (Brandenburg, F.J.: Graph clustering I: Cycles of cliques. In Di Battista, G., ed.: Graph Drawing (Proc. GD '97). Volume 1353 of Lecture Notes Comput. Sci., Springer-Verlag (1997) 158--168) to formalize the problem of automatically identifying dense subgraphs ($Y$-graphs, clusters) that are prone to be collapsed and shown with a matricial representation when needed. We show that (planar, $K_5$)-recognition, that is, the problem of identifying $K_5$ subgraphs such that the graph obtained by collapsing them is planar, is NP-hard. On the positive side, we show that it is possible to determine the highest value of $k$ such that $G$ is a (planar,$k$-core)-graph in $O(m + n log(n))$ time.
Feedback for Dagstuhl Publishing