We study the Maximum Independent Set problem for geometric objects given in the data stream model. A set of geometric objects is said to be independent if the objects are pairwise disjoint. We consider geometric objects in one and two dimensions, i.e., intervals and disks. Let α be the cardinality of the largest independent set. Our goal is to estimate α in a small amount of space, given that the input is received as a one-pass stream. We also consider a generalization of this problem by assigning weights to each object and estimating β, the largest value of a weighted independent set. We initialize the study of this problem in the turnstile streaming model (insertions and deletions) and provide the first algorithms for estimating α and β. For unit-length intervals, we obtain a (2+ε)-approximation to α and β in poly(log(n)/ε) space. We also show a matching lower bound. Combined with the 3/2-approximation for insertion-only streams by Cabello and Perez-Lanterno [Cabello and Pérez-Lantero, 2017], our result implies a separation between the insertion-only and turnstile model. For unit-radius disks, we obtain a (8√3/π)-approximation to α and β in poly(log(n)/ε) space, which is closely related to the hexagonal circle packing constant. Finally, we provide algorithms for estimating α for arbitrary-length intervals under a bounded intersection assumption and study the parameterized space complexity of estimating α and β, where the parameter is the ratio of maximum to minimum interval length.
@InProceedings{bakshi_et_al:LIPIcs.APPROX/RANDOM.2020.64, author = {Bakshi, Ainesh and Chepurko, Nadiia and Woodruff, David P.}, title = {{Weighted Maximum Independent Set of Geometric Objects in Turnstile Streams}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)}, pages = {64:1--64:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-164-1}, ISSN = {1868-8969}, year = {2020}, volume = {176}, editor = {Byrka, Jaros{\l}aw and Meka, Raghu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.64}, URN = {urn:nbn:de:0030-drops-126679}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2020.64}, annote = {Keywords: Weighted Maximum Independent Set, Geometric Graphs, Turnstile Streams} }
Feedback for Dagstuhl Publishing