Document

On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

File

LIPIcs.APPROX-RANDOM.2021.19.pdf
• Filesize: 1.07 MB
• 18 pages

Cite As

Christian Konrad and Kheeran K. Naidu. On Two-Pass Streaming Algorithms for Maximum Bipartite Matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19

Abstract

We study two-pass streaming algorithms for Maximum Bipartite Matching (MBM). All known two-pass streaming algorithms for MBM operate in a similar fashion: They compute a maximal matching in the first pass and find 3-augmenting paths in the second in order to augment the matching found in the first pass. Our aim is to explore the limitations of this approach and to determine whether current techniques can be used to further improve the state-of-the-art algorithms. We give the following results: We show that every two-pass streaming algorithm that solely computes a maximal matching in the first pass and outputs a (2/3+ε)-approximation requires n^{1+Ω(1/(log log n))} space, for every ε > 0, where n is the number of vertices of the input graph. This result is obtained by extending the Ruzsa-Szemerédi graph construction of [Goel et al., SODA'12] so as to ensure that the resulting graph has a close to perfect matching, the key property needed in our construction. This result may be of independent interest. Furthermore, we combine the two main techniques, i.e., subsampling followed by the Greedy matching algorithm [Konrad, MFCS'18] which gives a 2-√2 ≈ 0.5857-approximation, and the computation of degree-bounded semi-matchings [Esfandiari et al., ICDMW'16][Kale and Tirodkar, APPROX'17] which gives a 1/2 + 1/12 ≈ 0.5833-approximation, and obtain a meta-algorithm that yields Konrad’s and Esfandiari et al.’s algorithms as special cases. This unifies two strands of research. By optimizing parameters, we discover that Konrad’s algorithm is optimal for the implied class of algorithms and, perhaps surprisingly, that there is a second optimal algorithm. We show that the analysis of our meta-algorithm is best possible. Our results imply that further improvements, if possible, require new techniques.

Subject Classification

ACM Subject Classification
• Information systems → Data streaming
• Mathematics of computing → Matchings and factors
• Theory of computation → Communication complexity
Keywords
• Data streaming
• matchings
• lower bounds

Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

References

1. Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with application to the maximum matching problem. In Automata, Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, volume 6756 of Lecture Notes in Computer Science, pages 526-538. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-22012-8_42.
2. Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-order streaming matching. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 19:1-19:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.19.
3. Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in dynamic graph streams and the simultaneous communication model. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345-1364. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch93.
4. Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. An auction algorithm for bipartite matching in streaming and massively parallel computation models. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 165-171. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976496.18.
5. Aaron Bernstein. Improved bounds for matching in random-order streams. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 12:1-12:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.12.
6. Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with applications to finding matchings and related problems in dynamic graph streams. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326-1344. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch92.
7. Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover in dynamic graph streams. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 30:1-30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.30.
8. Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large matchings in semi-streaming. In Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, IEEE International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain, pages 608-614. IEEE Computer Society, 2016. URL: https://doi.org/10.1109/ICDMW.2016.0092.
9. Jittat Fakcharoenphol, Bundit Laekhanukit, and Danupon Nanongkai. Faster algorithms for semi-matching problems. ACM Trans. Algorithms, 10(3), 2014. URL: https://doi.org/10.1145/2601071.
10. Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi. Approximate maximum matching in random streams. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1773-1785. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.108.
11. Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in a semi-streaming model. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer Science, pages 531-543. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-27836-8_46.
12. Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via unweighted augmentations. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 491-500. ACM, 2019. URL: https://doi.org/10.1145/3293611.3331603.
13. Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming complexity of maximum bipartite matching. In Yuval Rabani, editor, Proceedings of the 23rd ACM-SIAM Symposium on Discrete algorithms (SODA), pages pp. 468-485. SIAM, 2012. URL: https://doi.org/10.1137/1.9781611973099.41.
14. Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei Wu, and Yuhao Zhang. Tight competitive ratios of classic matching algorithms in the fully online model. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2875-2886. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.178.
15. Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes over graph streams. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S. Vempala, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, volume 81 of LIPIcs, pages 15:1-15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15.
16. Michael Kapralov. Better bounds for matchings in the streaming model. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679-1697. SIAM, 2013. URL: https://doi.org/10.1137/1.9781611973105.121.
17. Michael Kapralov. Space lower bounds for approximating maximum matching in the edge arrival model. In Dániel Marx, editor, Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages pp. 1874-1893. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.112.
18. Christian Konrad. Maximum matching in turnstile streams. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 840-852. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_70.
19. Christian Konrad. A simple augmentation method for matchings with applications to streaming algorithms. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 74:1-74:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.74.
20. Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-streaming with few passes. In Anupam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A. Servedio, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, volume 7408 of Lecture Notes in Computer Science, pages 231-242. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-32512-0_20.
21. Christian Konrad and Adi Rosén. Approximating semi-matchings in streaming and in two-party communication. ACM Trans. Algorithms, 12(3), 2016. URL: https://doi.org/10.1145/2898960.
22. Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science, pages 170-181. Springer, 2005. URL: https://doi.org/10.1007/11538462_15.
23. Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9-20, 2014. URL: https://doi.org/10.1145/2627692.2627694.
24. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. URL: https://doi.org/10.1017/CBO9780511813603.
25. Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity. In Proceedings of the 18th Symposium on Foundations of Computer Science (FOCS), pages pp. 222-227. IEEE Computer Society, 1977. URL: https://doi.org/10.1109/SFCS.1977.24.
X

Feedback for Dagstuhl Publishing