LIPIcs, Volume 207

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)



Thumbnail PDF

Event

APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington, US (Virtual Conference)

Editors

Mary Wootters
  • Stanford University, Departments of Computer Science and Electrical Engineering, CA, USA
Laura Sanità
  • Eindhoven University of Technology, Department of Mathematics and Computer Science, The Netherlands

Publication Details

  • published at: 2021-09-15
  • Publisher: Schloss Dagstuhl – Leibniz-Zentrum für Informatik
  • ISBN: 978-3-95977-207-5
  • DBLP: db/conf/approx/approx2021

Access Numbers

Documents

No documents found matching your filter selection.
Document
Complete Volume
LIPIcs, Volume 207, APPROX/RANDOM 2021, Complete Volume

Authors: Mary Wootters and Laura Sanità


Abstract
LIPIcs, Volume 207, APPROX/RANDOM 2021, Complete Volume

Cite as

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 1-1240, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Proceedings{wootters_et_al:LIPIcs.APPROX/RANDOM.2021,
  title =	{{LIPIcs, Volume 207, APPROX/RANDOM 2021, Complete Volume}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{1--1240},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021},
  URN =		{urn:nbn:de:0030-drops-146929},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021},
  annote =	{Keywords: LIPIcs, Volume 207, APPROX/RANDOM 2021, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Mary Wootters and Laura Sanità


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{wootters_et_al:LIPIcs.APPROX/RANDOM.2021.0,
  author =	{Wootters, Mary and Sanit\`{a}, Laura},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{0:i--0:x},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.0},
  URN =		{urn:nbn:de:0030-drops-146933},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
APPROX
On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources

Authors: Umang Bhaskar, A. R. Sricharan, and Rohit Vaish


Abstract
We study the fair allocation of undesirable indivisible items, or chores. While the case of desirable indivisible items (or goods) is extensively studied, with many results known for different notions of fairness, less is known about the fair division of chores. We study envy-free allocation of chores and make three contributions. First, we show that determining the existence of an envy-free allocation is NP-complete even in the simple case when agents have binary additive valuations. Second, we provide a polynomial-time algorithm for computing an allocation that satisfies envy-freeness up to one chore (EF1), correcting a claim in the existing literature. A modification of our algorithm can be used to compute an EF1 allocation for doubly monotone instances (where each agent can partition the set of items into objective goods and objective chores). Our third result applies to a mixed resources model consisting of indivisible items and a divisible, undesirable heterogeneous resource (i.e., a bad cake). We show that there always exists an allocation that satisfies envy-freeness for mixed resources (EFM) in this setting, complementing a recent result of Bei et al. [Bei et al., 2021] for indivisible goods and divisible cake.

Cite as

Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhaskar_et_al:LIPIcs.APPROX/RANDOM.2021.1,
  author =	{Bhaskar, Umang and Sricharan, A. R. and Vaish, Rohit},
  title =	{{On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{1:1--1:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.1},
  URN =		{urn:nbn:de:0030-drops-146944},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.1},
  annote =	{Keywords: Fair Division, Indivisible Chores, Approximate Envy-Freeness}
}
Document
APPROX
Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

Authors: Susanne Albers and Sebastian Schubert


Abstract
We study the b-matching problem, which generalizes classical online matching introduced by Karp, Vazirani and Vazirani (STOC 1990). Consider a bipartite graph G = (S ̇∪ R,E). Every vertex s ∈ S is a server with a capacity b_s, indicating the number of possible matching partners. The vertices r ∈ R are requests that arrive online and must be matched immediately to an eligible server. The goal is to maximize the cardinality of the constructed matching. In contrast to earlier work, we study the general setting where servers may have arbitrary, individual capacities. We prove that the most natural and simple online algorithms achieve optimal competitive ratios. As for deterministic algorithms, we give a greedy algorithm RelativeBalance and analyze it by extending the primal-dual framework of Devanur, Jain and Kleinberg (SODA 2013). In the area of randomized algorithms we study the celebrated Ranking algorithm by Karp, Vazirani and Vazirani. We prove that the original Ranking strategy, simply picking a random permutation of the servers, achieves an optimal competitiveness of 1-1/e, independently of the server capacities. Hence it is not necessary to resort to a reduction, replacing every server s by b_s vertices of unit capacity and to then run Ranking on this graph with ∑_{s ∈ S} b_s vertices on the left-hand side. From a theoretical point of view our result explores the power of randomization and strictly limits the amount of required randomness. From a practical point of view it leads to more efficient allocation algorithms. Technically, we show that the primal-dual framework of Devanur, Jain and Kleinberg cannot establish a competitiveness better than 1/2 for the original Ranking algorithm, choosing a permutation of the servers. Therefore, we formulate a new configuration LP for the b-matching problem and then conduct a primal-dual analysis. We extend this analysis approach to the vertex-weighted b-matching problem. Specifically, we show that the algorithm PerturbedGreedy by Aggarwal, Goel, Karande and Mehta (SODA 2011), again with a sole randomization over the set of servers, is (1-1/e)-competitive. Together with recent work by Huang and Zhang (STOC 2020), our results demonstrate that configuration LPs can be strictly stronger than standard LPs in the analysis of more complex matching problems.

Cite as

Susanne Albers and Sebastian Schubert. Optimal Algorithms for Online b-Matching with Variable Vertex Capacities. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 2:1-2:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{albers_et_al:LIPIcs.APPROX/RANDOM.2021.2,
  author =	{Albers, Susanne and Schubert, Sebastian},
  title =	{{Optimal Algorithms for Online b-Matching with Variable Vertex Capacities}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{2:1--2:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.2},
  URN =		{urn:nbn:de:0030-drops-146957},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.2},
  annote =	{Keywords: Online algorithms, primal-dual analysis, configuration LP, b-matching, variable vertex capacities, unweighted matching, vertex-weighted matching}
}
Document
APPROX
Bag-Of-Tasks Scheduling on Related Machines

Authors: Anupam Gupta, Amit Kumar, and Sahil Singla


Abstract
We consider online scheduling to minimize weighted completion time on related machines, where each job consists of several tasks that can be concurrently executed. A job gets completed when all its component tasks finish. We obtain an O(K³ log² K)-competitive algorithm in the non-clairvoyant setting, where K denotes the number of distinct machine speeds. The analysis is based on dual-fitting on a precedence-constrained LP relaxation that may be of independent interest.

Cite as

Anupam Gupta, Amit Kumar, and Sahil Singla. Bag-Of-Tasks Scheduling on Related Machines. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.APPROX/RANDOM.2021.3,
  author =	{Gupta, Anupam and Kumar, Amit and Singla, Sahil},
  title =	{{Bag-Of-Tasks Scheduling on Related Machines}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{3:1--3:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.3},
  URN =		{urn:nbn:de:0030-drops-146967},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.3},
  annote =	{Keywords: approximation algorithms, scheduling, bag-of-tasks, related machines}
}
Document
APPROX
Hardness of Approximation for Euclidean k-Median

Authors: Anup Bhattacharya, Dishant Goyal, and Ragesh Jaiswal


Abstract
The Euclidean k-median problem is defined in the following manner: given a set 𝒳 of n points in d-dimensional Euclidean space ℝ^d, and an integer k, find a set C ⊂ ℝ^d of k points (called centers) such that the cost function Φ(C,𝒳) ≡ ∑_{x ∈ 𝒳} min_{c ∈ C} ‖x-c‖₂ is minimized. The Euclidean k-means problem is defined similarly by replacing the distance with squared Euclidean distance in the cost function. Various hardness of approximation results are known for the Euclidean k-means problem [Pranjal Awasthi et al., 2015; Euiwoong Lee et al., 2017; Vincent Cohen{-}Addad and {Karthik {C. S.}}, 2019]. However, no hardness of approximation result was known for the Euclidean k-median problem. In this work, assuming the unique games conjecture (UGC), we provide the hardness of approximation result for the Euclidean k-median problem in O(log k) dimensional space. This solves an open question posed explicitly in the work of Awasthi et al. [Pranjal Awasthi et al., 2015]. Furthermore, we study the hardness of approximation for the Euclidean k-means/k-median problems in the bi-criteria setting where an algorithm is allowed to choose more than k centers. That is, bi-criteria approximation algorithms are allowed to output β k centers (for constant β > 1) and the approximation ratio is computed with respect to the optimal k-means/k-median cost. We show the hardness of bi-criteria approximation result for the Euclidean k-median problem for any β < 1.015, assuming UGC. We also show a similar hardness of bi-criteria approximation result for the Euclidean k-means problem with a stronger bound of β < 1.28, again assuming UGC.

Cite as

Anup Bhattacharya, Dishant Goyal, and Ragesh Jaiswal. Hardness of Approximation for Euclidean k-Median. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhattacharya_et_al:LIPIcs.APPROX/RANDOM.2021.4,
  author =	{Bhattacharya, Anup and Goyal, Dishant and Jaiswal, Ragesh},
  title =	{{Hardness of Approximation for Euclidean k-Median}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{4:1--4:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.4},
  URN =		{urn:nbn:de:0030-drops-146979},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.4},
  annote =	{Keywords: Hardness of approximation, bicriteria approximation, approximation algorithms, k-median, k-means}
}
Document
APPROX
Online Directed Spanners and Steiner Forests

Authors: Elena Grigorescu, Young-San Lin, and Kent Quanrud


Abstract
We present online algorithms for directed spanners and directed Steiner forests. These are well-studied network connectivity problems that fall under the unifying framework of online covering and packing linear programming formulations. This framework was developed in the seminal work of Buchbinder and Naor (Mathematics of Operations Research, 34, 2009) and is based on primal-dual techniques. Specifically, our results include the following: - For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we present an efficient randomized algorithm with competitive ratio Õ(n^{4/5}) for graphs with general edge lengths, where n is the number of vertices of the given graph. For graphs with uniform edge lengths, we give an efficient randomized algorithm with competitive ratio Õ(n^{2/3+ε}), and an efficient deterministic algorithm with competitive ratio Õ(k^{1/2+ε}), where k is the number of terminal pairs. To the best of our knowledge, these are the first online algorithms for directed spanners. In the offline version, the current best approximation ratio for uniform edge lengths is Õ(n^{3/5 + ε}), due to Chlamt{á}č, Dinitz, Kortsarz, and Laekhanukit (SODA 2017, TALG 2020). - For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be connected arrive online, we present an efficient randomized algorithm with competitive ratio Õ(n^{2/3 + ε}). The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is Õ(k^{1/2 + ε})-competitive. In the offline version, the current best approximation ratio with uniform costs is Õ(n^{26/45 + ε}), due to Abboud and Bodwin (SODA 2018). To obtain efficient and competitive online algorithms, we observe that a small modification of the online covering and packing framework by Buchbinder and Naor implies a polynomial-time implementation of the primal-dual approach with separation oracles, which a priori might perform exponentially many calls to the oracle. We convert the online spanner problem into an online covering problem and complete the rounding-step analysis in a problem-specific fashion.

Cite as

Elena Grigorescu, Young-San Lin, and Kent Quanrud. Online Directed Spanners and Steiner Forests. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 5:1-5:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{grigorescu_et_al:LIPIcs.APPROX/RANDOM.2021.5,
  author =	{Grigorescu, Elena and Lin, Young-San and Quanrud, Kent},
  title =	{{Online Directed Spanners and Steiner Forests}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{5:1--5:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.5},
  URN =		{urn:nbn:de:0030-drops-146987},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.5},
  annote =	{Keywords: online directed pairwise spanners, online directed Steiner forests, online covering/packing linear programming, primal-dual approach}
}
Document
APPROX
Query Complexity of Global Minimum Cut

Authors: Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar


Abstract
In this work, we resolve the query complexity of global minimum cut problem for a graph by designing a randomized algorithm for approximating the size of minimum cut in a graph, where the graph can be accessed through local queries like Degree, Neighbor, and Adjacency queries. Given ε ∈ (0,1), the algorithm with high probability outputs an estimate t̂ satisfying the following (1-ε) t ≤ t̂ ≤ (1+ε) t, where t is the size of minimum cut in the graph. The expected number of local queries used by our algorithm is min{m+n,m/t}poly(log n,1/(ε)) where n and m are the number of vertices and edges in the graph, respectively. Eden and Rosenbaum showed that Ω(m/t) local queries are required for approximating the size of minimum cut in graphs, {but no local query based algorithm was known. Our algorithmic result coupled with the lower bound of Eden and Rosenbaum [APPROX 2018] resolve the query complexity of the problem of estimating the size of minimum cut in graphs using local queries.} Building on the lower bound of Eden and Rosenbaum, we show that, for all t ∈ ℕ, Ω(m) local queries are required to decide if the size of the minimum cut in the graph is t or t-2. Also, we show that, for any t ∈ ℕ, Ω(m) local queries are required to find all the minimum cut edges even if it is promised that the input graph has a minimum cut of size t. Both of our lower bound results are randomized, and hold even if we can make Random Edge queries in addition to local queries.

Cite as

Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar. Query Complexity of Global Minimum Cut. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 6:1-6:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bishnu_et_al:LIPIcs.APPROX/RANDOM.2021.6,
  author =	{Bishnu, Arijit and Ghosh, Arijit and Mishra, Gopinath and Paraashar, Manaswi},
  title =	{{Query Complexity of Global Minimum Cut}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{6:1--6:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.6},
  URN =		{urn:nbn:de:0030-drops-146992},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.6},
  annote =	{Keywords: Query complexity, Global mincut}
}
Document
APPROX
A Constant-Factor Approximation for Weighted Bond Cover

Authors: Eun Jung Kim, Euiwoong Lee, and Dimitrios M. Thilikos


Abstract
The Weighted ℱ-Vertex Deletion for a class ℱ of graphs asks, weighted graph G, for a minimum weight vertex set S such that G-S ∈ ℱ. The case when ℱ is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for Weighted ℱ-Vertex Deletion. Only three cases of minor-closed ℱ are known to admit constant-factor approximations, namely Vertex Cover, Feedback Vertex Set and Diamond Hitting Set. We study the problem for the class ℱ of θ_c-minor-free graphs, under the equivalent setting of the Weighted c-Bond Cover problem, and present a constant-factor approximation algorithm using the primal-dual method. For this, we leverage a structure theorem implicit in [Joret et al., SIDMA'14] which states the following: any graph G containing a θ_c-minor-model either contains a large two-terminal protrusion, or contains a constant-size θ_c-minor-model, or a collection of pairwise disjoint constant-sized connected sets that can be contracted simultaneously to yield a dense graph. In the first case, we tame the graph by replacing the protrusion with a special-purpose weighted gadget. For the second and third case, we provide a weighting scheme which guarantees a local approximation ratio. Besides making an important step in the quest of (dis)proving a constant-factor approximation for Weighted ℱ-Vertex Deletion, our result may be useful as a template for algorithms for other minor-closed families.

Cite as

Eun Jung Kim, Euiwoong Lee, and Dimitrios M. Thilikos. A Constant-Factor Approximation for Weighted Bond Cover. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.APPROX/RANDOM.2021.7,
  author =	{Kim, Eun Jung and Lee, Euiwoong and Thilikos, Dimitrios M.},
  title =	{{A Constant-Factor Approximation for Weighted Bond Cover}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.7},
  URN =		{urn:nbn:de:0030-drops-147002},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.7},
  annote =	{Keywords: Constant-factor approximation algorithms, Primal-dual method, Bonds in graphs, Graph minors, Graph modification problems}
}
Document
APPROX
Truly Asymptotic Lower Bounds for Online Vector Bin Packing

Authors: János Balogh, Ilan Reuven Cohen, Leah Epstein, and Asaf Levin


Abstract
In this work, we consider online d-dimensional vector bin packing. It is known that no algorithm can have a competitive ratio of o(d/log² d) in the absolute sense, although upper bounds for this problem have always been presented in the asymptotic sense. Since variants of bin packing are traditionally studied with respect to the asymptotic measure, and since the two measures are different, we focus on the asymptotic measure and prove new lower bounds of the asymptotic competitive ratio. The existing lower bounds prior to this work were known to be smaller than 3, even for very large d. Here, we significantly improved on the best known lower bounds of the asymptotic competitive ratio (and as a byproduct, on the absolute competitive ratio) for online vector packing of vectors with d ≥ 3 dimensions, for every dimension d. To obtain these results, we use several different constructions, one of which is an adaptive construction with a lower bound of Ω(√d). Our main result is that the lower bound of Ω(d/log² d) on the competitive ratio holds also in the asymptotic sense. This result holds also against randomized algorithms, and requires a careful adaptation of constructions for online coloring, rather than simple black-box reductions.

Cite as

János Balogh, Ilan Reuven Cohen, Leah Epstein, and Asaf Levin. Truly Asymptotic Lower Bounds for Online Vector Bin Packing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{balogh_et_al:LIPIcs.APPROX/RANDOM.2021.8,
  author =	{Balogh, J\'{a}nos and Cohen, Ilan Reuven and Epstein, Leah and Levin, Asaf},
  title =	{{Truly Asymptotic Lower Bounds for Online Vector Bin Packing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.8},
  URN =		{urn:nbn:de:0030-drops-147013},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.8},
  annote =	{Keywords: Bin packing, online algorithms, approximation algorithms, vector packing}
}
Document
APPROX
Fine-Grained Completeness for Optimization in P

Authors: Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann


Abstract
We initiate the study of fine-grained completeness theorems for exact and approximate optimization in the polynomial-time regime. Inspired by the first completeness results for decision problems in P (Gao, Impagliazzo, Kolokolova, Williams, TALG 2019) as well as the classic class MaxSNP and MaxSNP-completeness for NP optimization problems (Papadimitriou, Yannakakis, JCSS 1991), we define polynomial-time analogues MaxSP and MinSP, which contain a number of natural optimization problems in P, including Maximum Inner Product, general forms of nearest neighbor search and optimization variants of the k-XOR problem. Specifically, we define MaxSP as the class of problems definable as max_{x₁,… ,x_k} #{(y₁,… ,y_𝓁) : ϕ(x₁,… ,x_k, y₁,… ,y_𝓁)}, where ϕ is a quantifier-free first-order property over a given relational structure (with MinSP defined analogously). On m-sized structures, we can solve each such problem in time O(m^{k+𝓁-1}). Our results are: - We determine (a sparse variant of) the Maximum/Minimum Inner Product problem as complete under deterministic fine-grained reductions: A strongly subquadratic algorithm for Maximum/Minimum Inner Product would beat the baseline running time of O(m^{k+𝓁-1}) for all problems in MaxSP/MinSP by a polynomial factor. - This completeness transfers to approximation: Maximum/Minimum Inner Product is also complete in the sense that a strongly subquadratic c-approximation would give a (c+ε)-approximation for all MaxSP/MinSP problems in time O(m^{k+𝓁-1-δ}), where ε > 0 can be chosen arbitrarily small. Combining our completeness with (Chen, Williams, SODA 2019), we obtain the perhaps surprising consequence that refuting the OV Hypothesis is equivalent to giving a O(1)-approximation for all MinSP problems in faster-than-O(m^{k+𝓁-1}) time. - By fine-tuning our reductions, we obtain mild algorithmic improvements for solving and approximating all problems in MaxSP and MinSP, using the fastest known algorithms for Maximum/Minimum Inner Product.

Cite as

Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. Fine-Grained Completeness for Optimization in P. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 9:1-9:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.APPROX/RANDOM.2021.9,
  author =	{Bringmann, Karl and Cassis, Alejandro and Fischer, Nick and K\"{u}nnemann, Marvin},
  title =	{{Fine-Grained Completeness for Optimization in P}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{9:1--9:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.9},
  URN =		{urn:nbn:de:0030-drops-147024},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.9},
  annote =	{Keywords: Fine-grained Complexity \& Algorithm Design, Completeness, Hardness of Approximation in P, Dimensionality Reductions}
}
Document
APPROX
An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

Authors: Hossein Jowhari


Abstract
In this paper, we present a new degree-based estimator for the size of maximum matching in bounded arboricity graphs. When the arboricity of the graph is bounded by α, the estimator gives a α+2 factor approximation of the matching size. For planar graphs, we show the estimator does better and returns a 3.5 approximation of the matching size. Using this estimator, we get new results for approximating the matching size of planar graphs in the streaming and distributed models of computation. In particular, in the vertex-arrival streams, we get a randomized O((√n)/(ε²)log n) space algorithm for approximating the matching size of a planar graph on n vertices within (3.5+ε) factor. Similarly, we get a simultaneous protocol in the vertex-partition model for approximating the matching size within (3.5+ε) factor using O((n^{2/3})/(ε²)log n) communication from each player. In comparison with the previous estimators, the estimator in this paper does not need to know the arboricity of the input graph and improves the approximation factor in the case of planar graphs.

Cite as

Hossein Jowhari. An Estimator for Matching Size in Low Arboricity Graphs with Two Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{jowhari:LIPIcs.APPROX/RANDOM.2021.10,
  author =	{Jowhari, Hossein},
  title =	{{An Estimator for Matching Size in Low Arboricity Graphs with Two Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.10},
  URN =		{urn:nbn:de:0030-drops-147039},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.10},
  annote =	{Keywords: Data Stream Algorithms, Maximum Matching, Planar Graphs}
}
Document
APPROX
An Optimal Algorithm for Triangle Counting in the Stream

Authors: Rajesh Jayaram and John Kallaugher


Abstract
We present a new algorithm for approximating the number of triangles in a graph G whose edges arrive as an arbitrary order stream. If m is the number of edges in G, T the number of triangles, Δ_E the maximum number of triangles which share a single edge, and Δ_V the maximum number of triangles which share a single vertex, then our algorithm requires space: Õ(m/T⋅(Δ_E + √{Δ_V})) Taken with the Ω((m Δ_E)/T) lower bound of Braverman, Ostrovsky, and Vilenchik (ICALP 2013), and the Ω((m √{Δ_V})/T) lower bound of Kallaugher and Price (SODA 2017), our algorithm is optimal up to log factors, resolving the complexity of a classic problem in graph streaming.

Cite as

Rajesh Jayaram and John Kallaugher. An Optimal Algorithm for Triangle Counting in the Stream. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 11:1-11:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{jayaram_et_al:LIPIcs.APPROX/RANDOM.2021.11,
  author =	{Jayaram, Rajesh and Kallaugher, John},
  title =	{{An Optimal Algorithm for Triangle Counting in the Stream}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{11:1--11:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.11},
  URN =		{urn:nbn:de:0030-drops-147046},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.11},
  annote =	{Keywords: Triangle Counting, Streaming, Graph Algorithms, Sampling, Sketching}
}
Document
APPROX
Matching Drivers to Riders: A Two-Stage Robust Approach

Authors: Omar El Housni, Vineet Goyal, Oussama Hanguir, and Clifford Stein


Abstract
Matching demand (riders) to supply (drivers) efficiently is a fundamental problem for ride-hailing platforms who need to match the riders (almost) as soon as the request arrives with only partial knowledge about future ride requests. A myopic approach that computes an optimal matching for current requests ignoring future uncertainty can be highly sub-optimal. In this paper, we consider a two-stage robust optimization framework for this matching problem where future demand uncertainty is modeled using a set of demand scenarios (specified explicitly or implicitly). The goal is to match the current request to drivers (in the first stage) so that the cost of first stage matching and the worst-case cost over all scenarios for the second stage matching is minimized. We show that this two-stage robust matching is NP-hard under both explicit and implicit models of uncertainty. We present constant approximation algorithms for both models of uncertainty under different settings and show they improve significantly over standard greedy approaches.

Cite as

Omar El Housni, Vineet Goyal, Oussama Hanguir, and Clifford Stein. Matching Drivers to Riders: A Two-Stage Robust Approach. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{housni_et_al:LIPIcs.APPROX/RANDOM.2021.12,
  author =	{Housni, Omar El and Goyal, Vineet and Hanguir, Oussama and Stein, Clifford},
  title =	{{Matching Drivers to Riders: A Two-Stage Robust Approach}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.12},
  URN =		{urn:nbn:de:0030-drops-147054},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.12},
  annote =	{Keywords: matching, robust optimization, approximation algorithms}
}
Document
APPROX
Secretary Matching Meets Probing with Commitment

Authors: Allan Borodin, Calum MacRury, and Akash Rakheja


Abstract
We consider the online bipartite matching problem within the context of stochastic probing with commitment. This is the one-sided online bipartite matching problem where edges adjacent to an online node must be probed to determine if they exist based on edge probabilities that become known when an online vertex arrives. If a probed edge exists, it must be used in the matching. We consider the competitiveness of online algorithms in the adversarial order model (AOM) and the secretary/random order model (ROM). More specifically, we consider an unknown bipartite stochastic graph G = (U,V,E) where U is the known set of offline vertices, V is the set of online vertices, G has edge probabilities (p_{e})_{e ∈ E}, and G has edge weights (w_{e})_{e ∈ E} or vertex weights (w_u)_{u ∈ U}. Additionally, G has a downward-closed set of probing constraints (𝒞_{v})_{v ∈ V}, where 𝒞_v indicates which sequences of edges adjacent to an online vertex v can be probed. This model generalizes the various settings of the classical bipartite matching problem (i.e. with and without probing). Our contributions include the introduction and analysis of probing within the random order model, and our generalization of probing constraints which includes budget (i.e. knapsack) constraints. Our algorithms run in polynomial time assuming access to a membership oracle for each 𝒞_v. In the vertex weighted setting, for adversarial order arrivals, we generalize the known 1/2 competitive ratio to our setting of 𝒞_v constraints. For random order arrivals, we show that the same algorithm attains an asymptotic competitive ratio of 1-1/e, provided the edge probabilities vanish to 0 sufficiently fast. We also obtain a strict competitive ratio for non-vanishing edge probabilities when the probing constraints are sufficiently simple. For example, if each 𝒞_v corresponds to a patience constraint 𝓁_v (i.e., 𝓁_v is the maximum number of probes of edges adjacent to v), and any one of following three conditions is satisfied (each studied in previous papers), then there is a conceptually simple greedy algorithm whose competitive ratio is 1-1/e. - When the offline vertices are unweighted. - When the online vertex probabilities are "vertex uniform"; i.e., p_{u,v} = p_v for all (u,v) ∈ E. - When the patience constraint 𝓁_v satisfies 𝓁_v ∈ {[1,|U|} for every online vertex; i.e., every online vertex either has unit or full patience. Finally, in the edge weighted case, we match the known optimal 1/e asymptotic competitive ratio for the classic (i.e. without probing) secretary matching problem.

Cite as

Allan Borodin, Calum MacRury, and Akash Rakheja. Secretary Matching Meets Probing with Commitment. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 13:1-13:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{borodin_et_al:LIPIcs.APPROX/RANDOM.2021.13,
  author =	{Borodin, Allan and MacRury, Calum and Rakheja, Akash},
  title =	{{Secretary Matching Meets Probing with Commitment}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{13:1--13:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.13},
  URN =		{urn:nbn:de:0030-drops-147067},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.13},
  annote =	{Keywords: Stochastic probing, Online algorithms, Bipartite matching, Optimization under uncertainty}
}
Document
APPROX
Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching Constraint

Authors: Chien-Chung Huang and François Sellier


Abstract
We consider the problem of maximizing a submodular function under the b-matching constraint, in the semi-streaming model. Our main results can be summarized as follows. - When the function is linear, i.e. for the maximum weight b-matching problem, we obtain a 2+ε approximation. This improves the previous best bound of 3+ε [Roie Levin and David Wajc, 2021]. - When the function is a non-negative monotone submodular function, we obtain a 3 + 2 √2 ≈ 5.828 approximation. This matches the currently best ratio [Roie Levin and David Wajc, 2021]. - When the function is a non-negative non-monotone submodular function, we obtain a 4 + 2 √3 ≈ 7.464 approximation. This ratio is also achieved in [Roie Levin and David Wajc, 2021], but only under the simple matching constraint, while we can deal with the more general b-matching constraint. We also consider a generalized problem, where a k-uniform hypergraph is given with an extra matroid constraint imposed on the edges, with the same goal of finding a b-matching that maximizes a submodular function. We extend our technique to this case to obtain an algorithm with an approximation of 8/3k+O(1). Our algorithms build on the ideas of the recent works of Levin and Wajc [Roie Levin and David Wajc, 2021] and of Garg, Jordan, and Svensson [Paritosh Garg et al., 2021]. Our main technical innovation is to introduce a data structure and associate it with each vertex and the matroid, to record the extra information of the stored edges. After the streaming phase, these data structures guide the greedy algorithm to make better choices.

Cite as

Chien-Chung Huang and François Sellier. Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching Constraint. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.APPROX/RANDOM.2021.14,
  author =	{Huang, Chien-Chung and Sellier, Fran\c{c}ois},
  title =	{{Semi-Streaming Algorithms for Submodular Function Maximization Under b-Matching Constraint}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.14},
  URN =		{urn:nbn:de:0030-drops-147072},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.14},
  annote =	{Keywords: Maximum Weight Matching, Submodular Function Maximization, Streaming, Matroid}
}
Document
APPROX
General Knapsack Problems in a Dynamic Setting

Authors: Yaron Fairstein, Ariel Kulik, Joseph (Seffi) Naor, and Danny Raz


Abstract
The world is dynamic and changes over time, thus any optimization problem used to model real life problems must address this dynamic nature, taking into account the cost of changes to a solution over time. The multistage model was introduced with this goal in mind. In this model we are given a series of instances of an optimization problem, corresponding to different times, and a solution is provided for each instance. The strive for obtaining near-optimal solutions for each instance on one hand, while maintaining similar solutions for consecutive time units on the other hand, is quantified and integrated into the objective function. In this paper we consider the Generalized Multistage d-Knapsack problem, a generalization of the multistage variants of the Multiple Knapsack problem, as well as the d-Dimensional Knapsack problem. We present a PTAS for Generalized Multistage d-Knapsack.

Cite as

Yaron Fairstein, Ariel Kulik, Joseph (Seffi) Naor, and Danny Raz. General Knapsack Problems in a Dynamic Setting. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fairstein_et_al:LIPIcs.APPROX/RANDOM.2021.15,
  author =	{Fairstein, Yaron and Kulik, Ariel and Naor, Joseph (Seffi) and Raz, Danny},
  title =	{{General Knapsack Problems in a Dynamic Setting}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.15},
  URN =		{urn:nbn:de:0030-drops-147081},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.15},
  annote =	{Keywords: Multistage, Multiple-Knapsacks, Multidimensional Knapsack}
}
Document
APPROX
Min-Sum Clustering (With Outliers)

Authors: Sandip Banerjee, Rafail Ostrovsky, and Yuval Rabani


Abstract
We give a constant factor polynomial time pseudo-approximation algorithm for min-sum clustering with or without outliers. The algorithm is allowed to exclude an arbitrarily small constant fraction of the points. For instance, we show how to compute a solution that clusters 98% of the input data points and pays no more than a constant factor times the optimal solution that clusters 99% of the input data points. More generally, we give the following bicriteria approximation: For any ε > 0, for any instance with n input points and for any positive integer n' ≤ n, we compute in polynomial time a clustering of at least (1-ε) n' points of cost at most a constant factor greater than the optimal cost of clustering n' points. The approximation guarantee grows with 1/(ε). Our results apply to instances of points in real space endowed with squared Euclidean distance, as well as to points in a metric space, where the number of clusters, and also the dimension if relevant, is arbitrary (part of the input, not an absolute constant).

Cite as

Sandip Banerjee, Rafail Ostrovsky, and Yuval Rabani. Min-Sum Clustering (With Outliers). In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{banerjee_et_al:LIPIcs.APPROX/RANDOM.2021.16,
  author =	{Banerjee, Sandip and Ostrovsky, Rafail and Rabani, Yuval},
  title =	{{Min-Sum Clustering (With Outliers)}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.16},
  URN =		{urn:nbn:de:0030-drops-147093},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.16},
  annote =	{Keywords: Clustering, approximation algorithms, primal-dual}
}
Document
APPROX
Streaming Approximation Resistance of Every Ordering CSP

Authors: Noah Singer, Madhu Sudan, and Santhoshini Velusamy


Abstract
An ordering constraint satisfaction problem (OCSP) is given by a positive integer k and a constraint predicate Π mapping permutations on {1,…,k} to {0,1}. Given an instance of OCSP(Π) on n variables and m constraints, the goal is to find an ordering of the n variables that maximizes the number of constraints that are satisfied, where a constraint specifies a sequence of k distinct variables and the constraint is satisfied by an ordering on the n variables if the ordering induced on the k variables in the constraint satisfies Π. Ordering constraint satisfaction problems capture natural problems including "Maximum acyclic subgraph (MAS)" and "Betweenness". In this work we consider the task of approximating the maximum number of satisfiable constraints in the (single-pass) streaming setting, where an instance is presented as a stream of constraints. We show that for every Π, OCSP(Π) is approximation-resistant to o(n)-space streaming algorithms, i.e., algorithms using o(n) space cannot distinguish streams where almost every constraint is satisfiable from streams where no ordering beats the random ordering by a noticeable amount. This space bound is tight up to polylogarithmic factors. In the case of MAS our result shows that for every ε > 0, MAS is not 1/2+ε-approximable in o(n) space. The previous best inapproximability result only ruled out a 3/4-approximation in o(√ n) space. Our results build on recent works of Chou, Golovnev, Sudan, Velingker, and Velusamy who show tight, linear-space inapproximability results for a broad class of (non-ordering) constraint satisfaction problems (CSPs) over arbitrary (finite) alphabets. Our results are obtained by building a family of appropriate CSPs (one for every q) from any given OCSP, and applying their work to this family of CSPs. To convert the resulting hardness results for CSPs back to our OCSP, we show that the hard instances from this earlier work have the following "small-set expansion" property: If the CSP instance is viewed as a hypergraph in the natural way, then for every partition of the hypergraph into small blocks most of the hyperedges are incident on vertices from distinct blocks. By exploiting this combinatorial property, in combination with the hardness results of the resulting families of CSPs, we give optimal inapproximability results for all OCSPs.

Cite as

Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming Approximation Resistance of Every Ordering CSP. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{singer_et_al:LIPIcs.APPROX/RANDOM.2021.17,
  author =	{Singer, Noah and Sudan, Madhu and Velusamy, Santhoshini},
  title =	{{Streaming Approximation Resistance of Every Ordering CSP}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.17},
  URN =		{urn:nbn:de:0030-drops-147106},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.17},
  annote =	{Keywords: Streaming approximations, approximation resistance, constraint satisfaction problems, ordering constraint satisfaction problems}
}
Document
APPROX
Upper and Lower Bounds for Complete Linkage in General Metric Spaces

Authors: Anna Arutyunova, Anna Großwendt, Heiko Röglin, Melanie Schmidt, and Julian Wargalla


Abstract
In a hierarchical clustering problem the task is to compute a series of mutually compatible clusterings of a finite metric space (P,dist). Starting with the clustering where every point forms its own cluster, one iteratively merges two clusters until only one cluster remains. Complete linkage is a well-known and popular algorithm to compute such clusterings: in every step it merges the two clusters whose union has the smallest radius (or diameter) among all currently possible merges. We prove that the radius (or diameter) of every k-clustering computed by complete linkage is at most by factor O(k) (or O(k²)) worse than an optimal k-clustering minimizing the radius (or diameter). Furthermore we give a negative answer to the question proposed by Dasgupta and Long [Sanjoy Dasgupta and Philip M. Long, 2005], who show a lower bound of Ω(log(k)) and ask if the approximation guarantee is in fact Θ(log(k)). We present instances where complete linkage performs poorly in the sense that the k-clustering computed by complete linkage is off by a factor of Ω(k) from an optimal solution for radius and diameter. We conclude that in general metric spaces complete linkage does not perform asymptotically better than single linkage, merging the two clusters with smallest inter-cluster distance, for which we prove an approximation guarantee of O(k).

Cite as

Anna Arutyunova, Anna Großwendt, Heiko Röglin, Melanie Schmidt, and Julian Wargalla. Upper and Lower Bounds for Complete Linkage in General Metric Spaces. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arutyunova_et_al:LIPIcs.APPROX/RANDOM.2021.18,
  author =	{Arutyunova, Anna and Gro{\ss}wendt, Anna and R\"{o}glin, Heiko and Schmidt, Melanie and Wargalla, Julian},
  title =	{{Upper and Lower Bounds for Complete Linkage in General Metric Spaces}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.18},
  URN =		{urn:nbn:de:0030-drops-147115},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.18},
  annote =	{Keywords: Hierarchical Clustering, Complete Linkage, agglomerative Clustering, k-Center}
}
Document
APPROX
On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

Authors: Christian Konrad and Kheeran K. Naidu


Abstract
We study two-pass streaming algorithms for Maximum Bipartite Matching (MBM). All known two-pass streaming algorithms for MBM operate in a similar fashion: They compute a maximal matching in the first pass and find 3-augmenting paths in the second in order to augment the matching found in the first pass. Our aim is to explore the limitations of this approach and to determine whether current techniques can be used to further improve the state-of-the-art algorithms. We give the following results: We show that every two-pass streaming algorithm that solely computes a maximal matching in the first pass and outputs a (2/3+ε)-approximation requires n^{1+Ω(1/(log log n))} space, for every ε > 0, where n is the number of vertices of the input graph. This result is obtained by extending the Ruzsa-Szemerédi graph construction of [Goel et al., SODA'12] so as to ensure that the resulting graph has a close to perfect matching, the key property needed in our construction. This result may be of independent interest. Furthermore, we combine the two main techniques, i.e., subsampling followed by the Greedy matching algorithm [Konrad, MFCS'18] which gives a 2-√2 ≈ 0.5857-approximation, and the computation of degree-bounded semi-matchings [Esfandiari et al., ICDMW'16][Kale and Tirodkar, APPROX'17] which gives a 1/2 + 1/12 ≈ 0.5833-approximation, and obtain a meta-algorithm that yields Konrad’s and Esfandiari et al.’s algorithms as special cases. This unifies two strands of research. By optimizing parameters, we discover that Konrad’s algorithm is optimal for the implied class of algorithms and, perhaps surprisingly, that there is a second optimal algorithm. We show that the analysis of our meta-algorithm is best possible. Our results imply that further improvements, if possible, require new techniques.

Cite as

Christian Konrad and Kheeran K. Naidu. On Two-Pass Streaming Algorithms for Maximum Bipartite Matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{konrad_et_al:LIPIcs.APPROX/RANDOM.2021.19,
  author =	{Konrad, Christian and Naidu, Kheeran K.},
  title =	{{On Two-Pass Streaming Algorithms for Maximum Bipartite Matching}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.19},
  URN =		{urn:nbn:de:0030-drops-147128},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.19},
  annote =	{Keywords: Data streaming, matchings, lower bounds}
}
Document
APPROX
Approximation Algorithms for Demand Strip Packing

Authors: Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi


Abstract
In the Demand Strip Packing problem (DSP), we are given a time interval and a collection of tasks, each characterized by a processing time and a demand for a given resource (such as electricity, computational power, etc.). A feasible solution consists of a schedule of the tasks within the mentioned time interval. Our goal is to minimize the peak resource consumption, i.e. the maximum total demand of tasks executed at any point in time. It is known that DSP is NP-hard to approximate below a factor 3/2, and standard techniques for related problems imply a (polynomial-time) 2-approximation. Our main result is a (5/3+ε)-approximation algorithm for any constant ε > 0. We also achieve best-possible approximation factors for some relevant special cases.

Cite as

Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi. Approximation Algorithms for Demand Strip Packing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 20:1-20:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{galvez_et_al:LIPIcs.APPROX/RANDOM.2021.20,
  author =	{G\'{a}lvez, Waldo and Grandoni, Fabrizio and Ameli, Afrouz Jabal and Khodamoradi, Kamyar},
  title =	{{Approximation Algorithms for Demand Strip Packing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{20:1--20:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.20},
  URN =		{urn:nbn:de:0030-drops-147130},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.20},
  annote =	{Keywords: Strip Packing, Two-Dimensional Packing, Approximation Algorithms}
}
Document
APPROX
Peak Demand Minimization via Sliced Strip Packing

Authors: Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas


Abstract
We study the Nonpreemptive Peak Demand Minimization (NPDM) problem, where we are given a set of jobs, specified by their processing times and energy requirements. The goal is to schedule all jobs within a fixed time period such that the peak load (the maximum total energy requirement at any time) is minimized. This problem has recently received significant attention due to its relevance in smart-grids. Theoretically, the problem is related to the classical strip packing problem (SP). In SP, a given set of axis-aligned rectangles must be packed into a fixed-width strip, such that the height of the strip is minimized. NPDM can be modeled as strip packing with slicing and stacking constraint: each rectangle may be cut vertically into multiple slices and the slices may be packed into the strip as individual pieces. The stacking constraint forbids solutions where two slices of the same rectangle are intersected by the same vertical line. Nonpreemption enforces the slices to be placed in contiguous horizontal locations (but may be placed at different vertical locations). We obtain a (5/3+ε)-approximation algorithm for the problem. We also provide an asymptotic efficient polynomial-time approximation scheme (AEPTAS) which generates a schedule for almost all jobs with energy consumption (1+ε) OPT. The remaining jobs fit into a thin container of height 1. The previous best result for NPDM was a 2.7 approximation based on FFDH [Ranjan et al., 2015]. One of our key ideas is providing several new lower bounds on the optimal solution of a geometric packing, which could be useful in other related problems. These lower bounds help us to obtain approximative solutions based on Steinberg’s algorithm in many cases. In addition, we show how to split schedules generated by the AEPTAS into few segments and to rearrange the corresponding jobs to insert the thin container mentioned above.

Cite as

Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas. Peak Demand Minimization via Sliced Strip Packing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 21:1-21:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{deppert_et_al:LIPIcs.APPROX/RANDOM.2021.21,
  author =	{Deppert, Max A. and Jansen, Klaus and Khan, Arindam and Rau, Malin and Tutas, Malte},
  title =	{{Peak Demand Minimization via Sliced Strip Packing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{21:1--21:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.21},
  URN =		{urn:nbn:de:0030-drops-147145},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.21},
  annote =	{Keywords: scheduling, peak demand minimization, approximation}
}
Document
APPROX
Tight Approximation Algorithms For Geometric Bin Packing with Skewed Items

Authors: Arindam Khan and Eklavya Sharma


Abstract
In the Two-dimensional Bin Packing (2BP) problem, we are given a set of rectangles of height and width at most one and our goal is to find an axis-aligned nonoverlapping packing of these rectangles into the minimum number of unit square bins. The problem admits no APTAS and the current best approximation ratio is 1.406 by Bansal and Khan [SODA'14]. A well-studied variant of the problem is Guillotine Two-dimensional Bin Packing (G2BP), where all rectangles must be packed in such a way that every rectangle in the packing can be obtained by recursively applying a sequence of end-to-end axis-parallel cuts, also called guillotine cuts. Bansal, Lodi, and Sviridenko [FOCS'05] obtained an APTAS for this problem. Let λ be the smallest constant such that for every set I of items, the number of bins in the optimal solution to G2BP for I is upper bounded by λ opt(I) + c, where opt(I) is the number of bins in the optimal solution to 2BP for I and c is a constant. It is known that 4/3 ≤ λ ≤ 1.692. Bansal and Khan [SODA'14] conjectured that λ = 4/3. The conjecture, if true, will imply a (4/3+ε)-approximation algorithm for 2BP. According to convention, for a given constant δ > 0, a rectangle is large if both its height and width are at least δ, and otherwise it is called skewed. We make progress towards the conjecture by showing λ = 4/3 for skewed instance, i.e., when all input rectangles are skewed. Even for this case, the previous best upper bound on λ was roughly 1.692. We also give an APTAS for 2BP for skewed instance, though general 2BP does not admit an APTAS.

Cite as

Arindam Khan and Eklavya Sharma. Tight Approximation Algorithms For Geometric Bin Packing with Skewed Items. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 22:1-22:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{khan_et_al:LIPIcs.APPROX/RANDOM.2021.22,
  author =	{Khan, Arindam and Sharma, Eklavya},
  title =	{{Tight Approximation Algorithms For Geometric Bin Packing with Skewed Items}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{22:1--22:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.22},
  URN =		{urn:nbn:de:0030-drops-147151},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.22},
  annote =	{Keywords: Geometric bin packing, guillotine separability, approximation algorithms}
}
Document
APPROX
Approximating Two-Stage Stochastic Supplier Problems

Authors: Brian Brubach, Nathaniel Grammel, David G. Harris, Aravind Srinivasan, Leonidas Tsepenekas, and Anil Vullikanti


Abstract
The main focus of this paper is radius-based (supplier) clustering in the two-stage stochastic setting with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint. We also explore a number of variants where additional constraints are imposed on the first-stage decisions, specifically matroid and multi-knapsack constraints. Our eventual goal is to provide results for supplier problems in the most general distributional setting, where there is only black-box access to the underlying distribution. To that end, we follow a two-step approach. First, we develop algorithms for a restricted version of each problem, in which all possible scenarios are explicitly provided; second, we employ a novel scenario-discarding variant of the standard Sample Average Approximation (SAA) method, in which we crucially exploit properties of the restricted-case algorithms. We finally note that the scenario-discarding modification to the SAA method is necessary in order to optimize over the radius.

Cite as

Brian Brubach, Nathaniel Grammel, David G. Harris, Aravind Srinivasan, Leonidas Tsepenekas, and Anil Vullikanti. Approximating Two-Stage Stochastic Supplier Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{brubach_et_al:LIPIcs.APPROX/RANDOM.2021.23,
  author =	{Brubach, Brian and Grammel, Nathaniel and Harris, David G. and Srinivasan, Aravind and Tsepenekas, Leonidas and Vullikanti, Anil},
  title =	{{Approximating Two-Stage Stochastic Supplier Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{23:1--23:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.23},
  URN =		{urn:nbn:de:0030-drops-147163},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.23},
  annote =	{Keywords: Approximation Algorithms, Stochastic Optimization, Two-Stage Recourse Model, Clustering Problems, Knapsack Supplier}
}
Document
APPROX
Fast Approximation Algorithms for Bounded Degree and Crossing Spanning Tree Problems

Authors: Chandra Chekuri, Kent Quanrud, and Manuel R. Torres


Abstract
We develop fast approximation algorithms for the minimum-cost version of the Bounded-Degree MST problem (BD-MST) and its generalization the Crossing Spanning Tree problem (Crossing-ST). We solve the underlying LP to within a (1+ε) approximation factor in near-linear time via the multiplicative weight update (MWU) technique. This yields, in particular, a near-linear time algorithm that outputs an estimate B such that B ≤ B^* ≤ ⌈(1+ε)B⌉+1 where B^* is the minimum-degree of a spanning tree of a given graph. To round the fractional solution, in our main technical contribution, we describe a fast near-linear time implementation of swap-rounding in the spanning tree polytope of a graph. The fractional solution can also be used to sparsify the input graph that can in turn be used to speed up existing combinatorial algorithms. Together, these ideas lead to significantly faster approximation algorithms than known before for the two problems of interest. In addition, a fast algorithm for swap rounding in the graphic matroid is a generic tool that has other applications, including to TSP and submodular function maximization.

Cite as

Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. Fast Approximation Algorithms for Bounded Degree and Crossing Spanning Tree Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 24:1-24:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.APPROX/RANDOM.2021.24,
  author =	{Chekuri, Chandra and Quanrud, Kent and Torres, Manuel R.},
  title =	{{Fast Approximation Algorithms for Bounded Degree and Crossing Spanning Tree Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{24:1--24:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.24},
  URN =		{urn:nbn:de:0030-drops-147177},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.24},
  annote =	{Keywords: bounded degree spanning tree, crossing spanning tree, swap rounding, fast approximation algorithms}
}
Document
APPROX
Hitting Weighted Even Cycles in Planar Graphs

Authors: Alexander Göke, Jochen Koenemann, Matthias Mnich, and Hao Sun


Abstract
A classical branch of graph algorithms is graph transversals, where one seeks a minimum-weight subset of nodes in a node-weighted graph G which intersects all copies of subgraphs F from a fixed family F. Many such graph transversal problems have been shown to admit polynomial-time approximation schemes (PTAS) for planar input graphs G, using a variety of techniques like the shifting technique (Baker, J. ACM 1994), bidimensionality (Fomin et al., SODA 2011), or connectivity domination (Cohen-Addad et al., STOC 2016). These techniques do not seem to apply to graph transversals with parity constraints, which have recently received significant attention, but for which no PTASs are known. In the even-cycle transversal (ECT) problem, the goal is to find a minimum-weight hitting set for the set of even cycles in an undirected graph. For ECT, Fiorini et al. (IPCO 2010) showed that the integrality gap of the standard covering LP relaxation is Θ(log n), and that adding sparsity inequalities reduces the integrality gap to 10. Our main result is a primal-dual algorithm that yields a 47/7 ≈ 6.71-approximation for ECT on node-weighted planar graphs, and an integrality gap of the same value for the standard LP relaxation on node-weighted planar graphs.

Cite as

Alexander Göke, Jochen Koenemann, Matthias Mnich, and Hao Sun. Hitting Weighted Even Cycles in Planar Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 25:1-25:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{goke_et_al:LIPIcs.APPROX/RANDOM.2021.25,
  author =	{G\"{o}ke, Alexander and Koenemann, Jochen and Mnich, Matthias and Sun, Hao},
  title =	{{Hitting Weighted Even Cycles in Planar Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{25:1--25:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.25},
  URN =		{urn:nbn:de:0030-drops-147186},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.25},
  annote =	{Keywords: Even cycles, planar graphs, integrality gap}
}
Document
APPROX
Revenue Maximization in Transportation Networks

Authors: Kshipra Bhawalkar, Kostas Kollias, and Manish Purohit


Abstract
We study the joint optimization problem of pricing trips in a transportation network and serving the induced demands by routing a fleet of available service vehicles to maximize revenue. Our framework encompasses applications that include traditional transportation networks (e.g., airplanes, buses) and their more modern counterparts (e.g., ride-sharing systems). We describe a simple combinatorial model, in which each edge in the network is endowed with a curve that gives the demand for traveling between its endpoints at any given price. We are supplied with a number of vehicles and a time budget to serve the demands induced by the prices that we set, seeking to maximize revenue. We first focus on a (preliminary) special case of our model with unit distances and unit time horizon. We show that this version of the problem can be solved optimally in polynomial time. Switching to the general case of our model, we first present a two-stage approach that separately optimizes for prices and routes, achieving a logarithmic approximation to revenue in the process. Next, using the insights gathered in the first two results, we present a constant factor approximation algorithm that jointly optimizes for prices and routes for the supply vehicles. Finally, we discuss how our algorithms can handle capacitated vehicles, impatient demands, and selfish (wage-maximizing) drivers.

Cite as

Kshipra Bhawalkar, Kostas Kollias, and Manish Purohit. Revenue Maximization in Transportation Networks. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhawalkar_et_al:LIPIcs.APPROX/RANDOM.2021.26,
  author =	{Bhawalkar, Kshipra and Kollias, Kostas and Purohit, Manish},
  title =	{{Revenue Maximization in Transportation Networks}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.26},
  URN =		{urn:nbn:de:0030-drops-147197},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.26},
  annote =	{Keywords: Pricing, networks, approximation algorithms}
}
Document
APPROX
Connected k-Partition of k-Connected Graphs and c-Claw-Free Graphs

Authors: Ralf Borndörfer, Katrin Casel, Davis Issac, Aikaterini Niklanovits, Stephan Schwartz, and Ziena Zeif


Abstract
A connected partition is a partition of the vertices of a graph into sets that induce connected subgraphs. Such partitions naturally occur in many application areas such as road networks, and image processing. In these settings, it is often desirable to partition into a fixed number of parts of roughly of the same size or weight. The resulting computational problem is called Balanced Connected Partition (BCP). The two classical objectives for BCP are to maximize the weight of the smallest, or minimize the weight of the largest component. We study BCP on c-claw-free graphs, the class of graphs that do not have K_{1,c} as an induced subgraph, and present efficient (c-1)-approximation algorithms for both objectives. In particular, for 3-claw-free graphs, also simply known as claw-free graphs, we obtain a 2-approximation. Due to the claw-freeness of line graphs, this also implies a 2-approximation for the edge-partition version of BCP in general graphs. A harder connected partition problem arises from demanding a connected partition into k parts that have (possibly) heterogeneous target weights w₁,…,w_k. In the 1970s Győri and Lovász showed that if G is k-connected and the target weights sum to the total size of G, such a partition exists. However, to this day no polynomial algorithm to compute such partitions exists for k > 4. Towards finding such a partition T₁,…, T_k in k-connected graphs for general k, we show how to efficiently compute connected partitions that at least approximately meet the target weights, subject to the mild assumption that each w_i is greater than the weight of the heaviest vertex. In particular, we give a 3-approximation for both the lower and the upper bounded version i.e. we guarantee that each T_i has weight at least (w_i)/3 or that each T_i has weight most 3w_i, respectively. Also, we present a both-side bounded version that produces a connected partition where each T_i has size at least (w_i)/3 and at most max({r,3}) w_i, where r ≥ 1 is the ratio between the largest and smallest value in w₁, … , w_k. In particular for the balanced version, i.e. w₁ = w₂ = , … , = w_k, this gives a partition with 1/3w_i ≤ w(T_i) ≤ 3w_i.

Cite as

Ralf Borndörfer, Katrin Casel, Davis Issac, Aikaterini Niklanovits, Stephan Schwartz, and Ziena Zeif. Connected k-Partition of k-Connected Graphs and c-Claw-Free Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{borndorfer_et_al:LIPIcs.APPROX/RANDOM.2021.27,
  author =	{Bornd\"{o}rfer, Ralf and Casel, Katrin and Issac, Davis and Niklanovits, Aikaterini and Schwartz, Stephan and Zeif, Ziena},
  title =	{{Connected k-Partition of k-Connected Graphs and c-Claw-Free Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.27},
  URN =		{urn:nbn:de:0030-drops-147200},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.27},
  annote =	{Keywords: connected partition, Gy\H{o}ri-Lov\'{a}sz, balanced partition, approximation algorithms}
}
Document
RANDOM
Better Pseudodistributions and Derandomization for Space-Bounded Computation

Authors: William M. Hoza


Abstract
Three decades ago, Nisan constructed an explicit pseudorandom generator (PRG) that fools width-n length-n read-once branching programs (ROBPs) with error ε and seed length O(log² n + log n ⋅ log(1/ε)) [Nisan, 1992]. Nisan’s generator remains the best explicit PRG known for this important model of computation. However, a recent line of work starting with Braverman, Cohen, and Garg [Braverman et al., 2020; Chattopadhyay and Liao, 2020; Cohen et al., 2021; Pyne and Vadhan, 2021] has shown how to construct weighted pseudorandom generators (WPRGs, aka pseudorandom pseudodistribution generators) with better seed lengths than Nisan’s generator when the error parameter ε is small. In this work, we present an explicit WPRG for width-n length-n ROBPs with seed length O(log² n + log(1/ε)). Our seed length eliminates log log factors from prior constructions, and our generator completes this line of research in the sense that further improvements would require beating Nisan’s generator in the standard constant-error regime. Our technique is a variation of a recently-discovered reduction that converts moderate-error PRGs into low-error WPRGs [Cohen et al., 2021; Pyne and Vadhan, 2021]. Our version of the reduction uses averaging samplers. We also point out that as a consequence of the recent work on WPRGs, any randomized space-S decision algorithm can be simulated deterministically in space O (S^{3/2} / √{log S}). This is a slight improvement over Saks and Zhou’s celebrated O(S^{3/2}) bound [Saks and Zhou, 1999]. For this application, our improved WPRG is not necessary.

Cite as

William M. Hoza. Better Pseudodistributions and Derandomization for Space-Bounded Computation. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 28:1-28:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{hoza:LIPIcs.APPROX/RANDOM.2021.28,
  author =	{Hoza, William M.},
  title =	{{Better Pseudodistributions and Derandomization for Space-Bounded Computation}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{28:1--28:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.28},
  URN =		{urn:nbn:de:0030-drops-147217},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.28},
  annote =	{Keywords: Weighted pseudorandom generator, pseudorandom pseudodistribution, read-once branching program, derandomization, space complexity}
}
Document
RANDOM
On the Hardness of Average-Case k-SUM

Authors: Zvika Brakerski, Noah Stephens-Davidowitz, and Vinod Vaikuntanathan


Abstract
In this work, we show the first worst-case to average-case reduction for the classical k-SUM problem. A k-SUM instance is a collection of m integers, and the goal of the k-SUM problem is to find a subset of k integers that sums to 0. In the average-case version, the m elements are chosen uniformly at random from some interval [-u,u]. We consider the total setting where m is sufficiently large (with respect to u and k), so that we are guaranteed (with high probability) that solutions must exist. In particular, m = u^{Ω(1/k)} suffices for totality. Much of the appeal of k-SUM, in particular connections to problems in computational geometry, extends to the total setting. The best known algorithm in the average-case total setting is due to Wagner (following the approach of Blum-Kalai-Wasserman), and achieves a running time of u^{Θ(1/log k)} when m = u^{Θ(1/log k)}. This beats the known (conditional) lower bounds for worst-case k-SUM, raising the natural question of whether it can be improved even further. However, in this work, we show a matching average-case lower bound, by showing a reduction from worst-case lattice problems, thus introducing a new family of techniques into the field of fine-grained complexity. In particular, we show that any algorithm solving average-case k-SUM on m elements in time u^{o(1/log k)} will give a super-polynomial improvement in the complexity of algorithms for lattice problems.

Cite as

Zvika Brakerski, Noah Stephens-Davidowitz, and Vinod Vaikuntanathan. On the Hardness of Average-Case k-SUM. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 29:1-29:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{brakerski_et_al:LIPIcs.APPROX/RANDOM.2021.29,
  author =	{Brakerski, Zvika and Stephens-Davidowitz, Noah and Vaikuntanathan, Vinod},
  title =	{{On the Hardness of Average-Case k-SUM}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{29:1--29:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.29},
  URN =		{urn:nbn:de:0030-drops-147223},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.29},
  annote =	{Keywords: k-SUM, fine-grained complexity, average-case hardness}
}
Document
RANDOM
Improved Hitting Set for Orbit of ROABPs

Authors: Vishwas Bhargava and Sumanta Ghosh


Abstract
The orbit of an n-variate polynomial f(x) over a field 𝔽 is the set {f(Ax+b) ∣ A ∈ GL(n, 𝔽) and b ∈ 𝔽ⁿ}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater than d, we construct a hitting set of size (ndw)^{O(w²log n⋅ min{w², dlog w})} for the orbit of ROABPs in unknown variable order where d is the individual degree and w is the width of ROABPs. We also give a hitting set of size (ndw)^{O(min{w²,dlog w})} for the orbit of polynomials computed by w-width ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey [Chandan Saha and Bhargav Thankey, 2021] who gave an (ndw)^{O(dlog w)} size hitting set for the orbit of commutative ROABPs (a subclass of any-order ROABPs) and (nw)^{O(w⁶log n)} size hitting set for the orbit of multilinear ROABPs. Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an open problem by [Chandan Saha and Bhargav Thankey, 2021] and this work solves it in small width setting. We prove some new rank concentration results by establishing low-cone concentration for the polynomials over vector spaces, and they strengthen some previously known low-support based rank concentrations shown in [Michael A. Forbes et al., 2013]. These new low-cone concentration results are crucial in our hitting set construction, and may be of independent interest. To the best of our knowledge, this is the first time when low-cone rank concentration has been used for designing hitting sets.

Cite as

Vishwas Bhargava and Sumanta Ghosh. Improved Hitting Set for Orbit of ROABPs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 30:1-30:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhargava_et_al:LIPIcs.APPROX/RANDOM.2021.30,
  author =	{Bhargava, Vishwas and Ghosh, Sumanta},
  title =	{{Improved Hitting Set for Orbit of ROABPs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{30:1--30:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.30},
  URN =		{urn:nbn:de:0030-drops-147231},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.30},
  annote =	{Keywords: Hitting Set, Low Cone Concentration, Orbits, PIT, ROABP}
}
Document
RANDOM
A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

Authors: David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov


Abstract
The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser & Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for convergence, many other natural questions can be asked about algorithms; for instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?". These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs.

Cite as

David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov. A New Notion of Commutativity for the Algorithmic Lovász Local Lemma. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{harris_et_al:LIPIcs.APPROX/RANDOM.2021.31,
  author =	{Harris, David G. and Iliopoulos, Fotis and Kolmogorov, Vladimir},
  title =	{{A New Notion of Commutativity for the Algorithmic Lov\'{a}sz Local Lemma}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{31:1--31:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.31},
  URN =		{urn:nbn:de:0030-drops-147244},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.31},
  annote =	{Keywords: Lov\'{a}sz Local Lemma, Resampling, Moser-Tardos algorithm, latin transversal, commutativity}
}
Document
RANDOM
From Coupling to Spectral Independence and Blackbox Comparison with the Down-Up Walk

Authors: Kuikui Liu


Abstract
We show that the existence of a "good" coupling w.r.t. Hamming distance for any local Markov chain on a discrete product space implies rapid mixing of the Glauber dynamics in a blackbox fashion. More specifically, we only require the expected distance between successive iterates under the coupling to be summable, as opposed to being one-step contractive in the worst case. Combined with recent local-to-global arguments [Chen et al., 2021], we establish asymptotically optimal lower bounds on the standard and modified log-Sobolev constants for the Glauber dynamics for sampling from spin systems on bounded-degree graphs when a curvature condition [Ollivier, 2009] is satisfied. To achieve this, we use Stein’s method for Markov chains [Bresler and Nagaraj, 2019; Reinert and Ross, 2019] to show that a "good" coupling for a local Markov chain yields strong bounds on the spectral independence of the distribution in the sense of [Anari et al., 2020]. Our primary application is to sampling proper list-colorings on bounded-degree graphs. In particular, combining the coupling for the flip dynamics given by [Vigoda, 2000; Chen et al., 2019] with our techniques, we show optimal O(nlog n) mixing for the Glauber dynamics for sampling proper list-colorings on any bounded-degree graph with maximum degree Δ whenever the size of the color lists are at least ({11/6 - ε}) Δ, where ε ≈ 10^{-5} is small constant. While O(n²) mixing was already known before, our approach additionally yields Chernoff-type concentration bounds for Hamming Lipschitz functions in this regime, which was not known before. Our approach is markedly different from prior works establishing spectral independence for spin systems using spatial mixing [Anari et al., 2020; Z. {Chen} et al., 2020; Chen et al., 2021; Feng et al., 2021], which crucially is still open in this regime for proper list-colorings.

Cite as

Kuikui Liu. From Coupling to Spectral Independence and Blackbox Comparison with the Down-Up Walk. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 32:1-32:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{liu:LIPIcs.APPROX/RANDOM.2021.32,
  author =	{Liu, Kuikui},
  title =	{{From Coupling to Spectral Independence and Blackbox Comparison with the Down-Up Walk}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{32:1--32:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.32},
  URN =		{urn:nbn:de:0030-drops-147259},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.32},
  annote =	{Keywords: Markov chains, Approximate counting, Spectral independence}
}
Document
RANDOM
Singularity of Random Integer Matrices with Large Entries

Authors: Sankeerth Rao Karingula and Shachar Lovett


Abstract
We study the singularity probability of random integer matrices. Concretely, the probability that a random n × n matrix, with integer entries chosen uniformly from {-m,…,m}, is singular. This problem has been well studied in two regimes: large n and constant m; or large m and constant n. In this paper, we extend previous techniques to handle the regime where both n,m are large. We show that the probability that such a matrix is singular is m^{-cn} for some absolute constant c > 0. We also provide some connections of our result to coding theory.

Cite as

Sankeerth Rao Karingula and Shachar Lovett. Singularity of Random Integer Matrices with Large Entries. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{karingula_et_al:LIPIcs.APPROX/RANDOM.2021.33,
  author =	{Karingula, Sankeerth Rao and Lovett, Shachar},
  title =	{{Singularity of Random Integer Matrices with Large Entries}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.33},
  URN =		{urn:nbn:de:0030-drops-147260},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.33},
  annote =	{Keywords: Coding Theory, Random matrix theory, Singularity probability MDS codes, Error correction codes, Littlewood Offord, Fourier Analysis}
}
Document
RANDOM
Interplay Between Graph Isomorphism and Earth Mover’s Distance in the Query and Communication Worlds

Authors: Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen


Abstract
The graph isomorphism distance between two graphs G_u and G_k is the fraction of entries in the adjacency matrix that has to be changed to make G_u isomorphic to G_k. We study the problem of estimating, up to a constant additive factor, the graph isomorphism distance between two graphs in the query model. In other words, if G_k is a known graph and G_u is an unknown graph whose adjacency matrix has to be accessed by querying the entries, what is the query complexity for testing whether the graph isomorphism distance between G_u and G_k is less than γ₁ or more than γ₂, where γ₁ and γ₂ are two constants with 0 ≤ γ₁ < γ₂ ≤ 1. It is also called the tolerant property testing of graph isomorphism in the dense graph model. The non-tolerant version (where γ₁ is 0) has been studied by Fischer and Matsliah (SICOMP'08). In this paper, we prove a (interesting) connection between tolerant graph isomorphism testing and tolerant testing of the well studied Earth Mover’s Distance (EMD). We prove that deciding tolerant graph isomorphism is equivalent to deciding tolerant EMD testing between multi-sets in the query setting. Moreover, the reductions between tolerant graph isomorphism and tolerant EMD testing (in query setting) can also be extended directly to work in the two party Alice-Bob communication model (where Alice and Bob have one graph each and they want to solve tolerant graph isomorphism problem by communicating bits), and possibly in other sublinear models as well. Testing tolerant EMD between two probability distributions is equivalent to testing EMD between two multi-sets, where the multiplicity of each element is taken appropriately, and we sample elements from the unknown multi-set with replacement. In this paper, our (main) contribution is to introduce the problem of {(tolerant) EMD testing between multi-sets (over Hamming cube) when we get samples from the unknown multi-set without replacement} and to show that this variant of tolerant testing of EMD is as hard as tolerant testing of graph isomorphism between two graphs. {Thus, while testing of equivalence between distributions is at the heart of the non-tolerant testing of graph isomorphism, we are showing that the estimation of the EMD over a Hamming cube (when we are allowed to sample without replacement) is at the heart of tolerant graph isomorphism.} We believe that the introduction of the problem of testing EMD between multi-sets (when we get samples without replacement) opens an entirely new direction in the world of testing properties of distributions.

Cite as

Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen. Interplay Between Graph Isomorphism and Earth Mover’s Distance in the Query and Communication Worlds. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 34:1-34:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.APPROX/RANDOM.2021.34,
  author =	{Chakraborty, Sourav and Ghosh, Arijit and Mishra, Gopinath and Sen, Sayantan},
  title =	{{Interplay Between Graph Isomorphism and Earth Mover’s Distance in the Query and Communication Worlds}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{34:1--34:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.34},
  URN =		{urn:nbn:de:0030-drops-147273},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.34},
  annote =	{Keywords: Graph Isomorphism, Earth Mover Distance, Query Complexity}
}
Document
RANDOM
The Product of Gaussian Matrices Is Close to Gaussian

Authors: Yi Li and David P. Woodruff


Abstract
We study the distribution of the matrix product G₁ G₂ ⋯ G_r of r independent Gaussian matrices of various sizes, where G_i is d_{i-1} × d_i, and we denote p = d₀, q = d_r, and require d₁ = d_{r-1}. Here the entries in each G_i are standard normal random variables with mean 0 and variance 1. Such products arise in the study of wireless communication, dynamical systems, and quantum transport, among other places. We show that, provided each d_i, i = 1, …, r, satisfies d_i ≥ C p ⋅ q, where C ≥ C₀ for a constant C₀ > 0 depending on r, then the matrix product G₁ G₂ ⋯ G_r has variation distance at most δ to a p × q matrix G of i.i.d. standard normal random variables with mean 0 and variance ∏_{i = 1}^{r-1} d_i. Here δ → 0 as C → ∞. Moreover, we show a converse for constant r that if d_i < C' max{p,q}^{1/2}min{p,q}^{3/2} for some i, then this total variation distance is at least δ', for an absolute constant δ' > 0 depending on C' and r. This converse is best possible when p = Θ(q).

Cite as

Yi Li and David P. Woodruff. The Product of Gaussian Matrices Is Close to Gaussian. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 35:1-35:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.APPROX/RANDOM.2021.35,
  author =	{Li, Yi and Woodruff, David P.},
  title =	{{The Product of Gaussian Matrices Is Close to Gaussian}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{35:1--35:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.35},
  URN =		{urn:nbn:de:0030-drops-147281},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.35},
  annote =	{Keywords: random matrix theory, total variation distance, matrix product}
}
Document
RANDOM
Fast Mixing via Polymers for Random Graphs with Unbounded Degree

Authors: Andreas Galanis, Leslie Ann Goldberg, and James Stewart


Abstract
The polymer model framework is a classical tool from statistical mechanics that has recently been used to obtain approximation algorithms for spin systems on classes of bounded-degree graphs; examples include the ferromagnetic Potts model on expanders and on the grid. One of the key ingredients in the analysis of polymer models is controlling the growth rate of the number of polymers, which has been typically achieved so far by invoking the bounded-degree assumption. Nevertheless, this assumption is often restrictive and obstructs the applicability of the method to more general graphs. For example, sparse random graphs typically have bounded average degree and good expansion properties, but they include vertices with unbounded degree, and therefore are excluded from the current polymer-model framework. We develop a less restrictive framework for polymer models that relaxes the standard bounded-degree assumption, by reworking the relevant polymer models from the edge perspective. The edge perspective allows us to bound the growth rate of the number of polymers in terms of the total degree of polymers, which in turn can be related more easily to the expansion properties of the underlying graph. To apply our methods, we consider random graphs with unbounded degrees from a fixed degree sequence (with minimum degree at least 3) and obtain approximation algorithms for the ferromagnetic Potts model, which is a standard benchmark for polymer models. Our techniques also extend to more general spin systems.

Cite as

Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast Mixing via Polymers for Random Graphs with Unbounded Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 36:1-36:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.APPROX/RANDOM.2021.36,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Stewart, James},
  title =	{{Fast Mixing via Polymers for Random Graphs with Unbounded Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{36:1--36:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.36},
  URN =		{urn:nbn:de:0030-drops-147291},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.36},
  annote =	{Keywords: Markov chains, approximate counting, Potts model, expander graphs, random graphs}
}
Document
RANDOM
Deterministic Approximate Counting of Polynomial Threshold Functions via a Derandomized Regularity Lemma

Authors: Rocco A. Servedio and Li-Yang Tan


Abstract
We study the problem of deterministically approximating the number of satisfying assignments of a polynomial threshold function (PTF) over Boolean space. We present and analyze a scheme for transforming such algorithms for PTFs over Gaussian space into algorithms for the more challenging and more standard setting of Boolean space. Applying this transformation to existing algorithms for Gaussian space leads to new algorithms for Boolean space that improve on prior state-of-the-art results due to Meka and Zuckerman [Meka and Zuckerman, 2013] and Kane [Kane, 2012]. Our approach is based on a bias-preserving derandomization of Meka and Zuckerman’s regularity lemma for polynomials [Meka and Zuckerman, 2013] using the [Rocco A. Servedio and Li-Yang Tan, 2018] pseudorandom generator for PTFs.

Cite as

Rocco A. Servedio and Li-Yang Tan. Deterministic Approximate Counting of Polynomial Threshold Functions via a Derandomized Regularity Lemma. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{servedio_et_al:LIPIcs.APPROX/RANDOM.2021.37,
  author =	{Servedio, Rocco A. and Tan, Li-Yang},
  title =	{{Deterministic Approximate Counting of Polynomial Threshold Functions via a Derandomized Regularity Lemma}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.37},
  URN =		{urn:nbn:de:0030-drops-147304},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.37},
  annote =	{Keywords: Derandomization, Polynomial threshold functions, deterministic approximate counting}
}
Document
RANDOM
Improved Product-Based High-Dimensional Expanders

Authors: Louis Golowich


Abstract
High-dimensional expanders generalize the notion of expander graphs to higher-dimensional simplicial complexes. In contrast to expander graphs, only a handful of high-dimensional expander constructions have been proposed, and no elementary combinatorial construction with near-optimal expansion is known. In this paper, we introduce an improved combinatorial high-dimensional expander construction, by modifying a previous construction of Liu, Mohanty, and Yang (ITCS 2020), which is based on a high-dimensional variant of a tensor product. Our construction achieves a spectral gap of Ω(1/(k²)) for random walks on the k-dimensional faces, which is only quadratically worse than the optimal bound of Θ(1/k). Previous combinatorial constructions, including that of Liu, Mohanty, and Yang, only achieved a spectral gap that is exponentially small in k. We also present reasoning that suggests our construction is optimal among similar product-based constructions.

Cite as

Louis Golowich. Improved Product-Based High-Dimensional Expanders. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 38:1-38:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{golowich:LIPIcs.APPROX/RANDOM.2021.38,
  author =	{Golowich, Louis},
  title =	{{Improved Product-Based High-Dimensional Expanders}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{38:1--38:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.38},
  URN =		{urn:nbn:de:0030-drops-147319},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.38},
  annote =	{Keywords: High-Dimensional Expander, Expander Graph, Random Walk}
}
Document
RANDOM
Improved Bounds for Coloring Locally Sparse Hypergraphs

Authors: Fotis Iliopoulos


Abstract
We show that, for every k ≥ 2, every k-uniform hypergaph of degree Δ and girth at least 5 is efficiently (1+o(1))(k-1) (Δ / ln Δ)^{1/(k-1)}-list colorable. As an application we obtain the currently best deterministic algorithm for list-coloring random hypergraphs of bounded average degree.

Cite as

Fotis Iliopoulos. Improved Bounds for Coloring Locally Sparse Hypergraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 39:1-39:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{iliopoulos:LIPIcs.APPROX/RANDOM.2021.39,
  author =	{Iliopoulos, Fotis},
  title =	{{Improved Bounds for Coloring Locally Sparse Hypergraphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{39:1--39:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.39},
  URN =		{urn:nbn:de:0030-drops-147328},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.39},
  annote =	{Keywords: hypergaph coloring, semi-random method, locally sparse, random hypergraphs}
}
Document
RANDOM
Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

Authors: Rikhav Shah and Sandeep Silwal


Abstract
Let M be an arbitrary n by n matrix of rank n-k. We study the condition number of M plus a low-rank perturbation UV^T where U, V are n by k random Gaussian matrices. Under some necessary assumptions, it is shown that M+UV^T is unlikely to have a large condition number. The main advantages of this kind of perturbation over the well-studied dense Gaussian perturbation, where every entry is independently perturbed, is the O(nk) cost to store U,V and the O(nk) increase in time complexity for performing the matrix-vector multiplication (M+UV^T)x. This improves the Ω(n²) space and time complexity increase required by a dense perturbation, which is especially burdensome if M is originally sparse. Our results also extend to the case where U and V have rank larger than k and to symmetric and complex settings. We also give an application to linear systems solving and perform some numerical experiments. Lastly, barriers in applying low-rank noise to other problems studied in the smoothed analysis framework are discussed.

Cite as

Rikhav Shah and Sandeep Silwal. Smoothed Analysis of the Condition Number Under Low-Rank Perturbations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 40:1-40:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{shah_et_al:LIPIcs.APPROX/RANDOM.2021.40,
  author =	{Shah, Rikhav and Silwal, Sandeep},
  title =	{{Smoothed Analysis of the Condition Number Under Low-Rank Perturbations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{40:1--40:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.40},
  URN =		{urn:nbn:de:0030-drops-147332},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.40},
  annote =	{Keywords: Smoothed analysis, condition number, low rank noise}
}
Document
RANDOM
Matroid Intersection: A Pseudo-Deterministic Parallel Reduction from Search to Weighted-Decision

Authors: Sumanta Ghosh and Rohit Gurjar


Abstract
We study the matroid intersection problem from the parallel complexity perspective. Given two matroids over the same ground set, the problem asks to decide whether they have a common base and its search version asks to find a common base, if one exists. Another widely studied variant is the weighted decision version where with the two matroids, we are given small weights on the ground set elements and a target weight W, and the question is to decide whether there is a common base of weight at least W. From the perspective of parallel complexity, the relation between the search and the decision versions is not well understood. We make a significant progress on this question by giving a pseudo-deterministic parallel (NC) algorithm for the search version that uses an oracle access to the weighted decision. The notion of pseudo-deterministic NC was recently introduced by Goldwasser and Grossman [Shafi Goldwasser and Ofer Grossman, 2017], which is a relaxation of NC. A pseudo-deterministic NC algorithm for a search problem is a randomized NC algorithm that, for a given input, outputs a fixed solution with high probability. In case the given matroids are linearly representable, our result implies a pseudo-deterministic NC algorithm (without the weighted decision oracle). This resolves an open question posed by Anari and Vazirani [Nima Anari and Vijay V. Vazirani, 2020].

Cite as

Sumanta Ghosh and Rohit Gurjar. Matroid Intersection: A Pseudo-Deterministic Parallel Reduction from Search to Weighted-Decision. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 41:1-41:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.APPROX/RANDOM.2021.41,
  author =	{Ghosh, Sumanta and Gurjar, Rohit},
  title =	{{Matroid Intersection: A Pseudo-Deterministic Parallel Reduction from Search to Weighted-Decision}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{41:1--41:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.41},
  URN =		{urn:nbn:de:0030-drops-147342},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.41},
  annote =	{Keywords: Linear Matroid, Matroid Intersection, Parallel Complexity, Pseudo-deterministic NC}
}
Document
RANDOM
On the Probabilistic Degree of an n-Variate Boolean Function

Authors: Srikanth Srinivasan and S. Venkitesh


Abstract
Nisan and Szegedy (CC 1994) showed that any Boolean function f:{0,1}ⁿ → {0,1} that depends on all its input variables, when represented as a real-valued multivariate polynomial P(x₁,…,x_n), has degree at least log n - O(log log n). This was improved to a tight (log n - O(1)) bound by Chiarelli, Hatami and Saks (Combinatorica 2020). Similar statements are also known for other Boolean function complexity measures such as Sensitivity (Simon (FCT 1983)), Quantum query complexity, and Approximate degree (Ambainis and de Wolf (CC 2014)). In this paper, we address this question for Probabilistic degree. The function f has probabilistic degree at most d if there is a random real-valued polynomial of degree at most d that agrees with f at each input with high probability. Our understanding of this complexity measure is significantly weaker than those above: for instance, we do not even know the probabilistic degree of the OR function, the best-known bounds put it between (log n)^{1/2-o(1)} and O(log n) (Beigel, Reingold, Spielman (STOC 1991); Tarui (TCS 1993); Harsha, Srinivasan (RSA 2019)). Here we can give a near-optimal understanding of the probabilistic degree of n-variate functions f, modulo our lack of understanding of the probabilistic degree of OR. We show that if the probabilistic degree of OR is (log n)^c, then the minimum possible probabilistic degree of such an f is at least (log n)^{c/(c+1)-o(1)}, and we show this is tight up to (log n)^{o(1)} factors.

Cite as

Srikanth Srinivasan and S. Venkitesh. On the Probabilistic Degree of an n-Variate Boolean Function. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 42:1-42:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{srinivasan_et_al:LIPIcs.APPROX/RANDOM.2021.42,
  author =	{Srinivasan, Srikanth and Venkitesh, S.},
  title =	{{On the Probabilistic Degree of an n-Variate Boolean Function}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{42:1--42:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.42},
  URN =		{urn:nbn:de:0030-drops-147356},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.42},
  annote =	{Keywords: truly n-variate, Boolean function, probabilistic polynomial, probabilistic degree}
}
Document
RANDOM
The Swendsen-Wang Dynamics on Trees

Authors: Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda


Abstract
The Swendsen-Wang algorithm is a sophisticated, widely-used Markov chain for sampling from the Gibbs distribution for the ferromagnetic Ising and Potts models. This chain has proved difficult to analyze, due in part to the global nature of its updates. We present optimal bounds on the convergence rate of the Swendsen-Wang algorithm for the complete d-ary tree. Our bounds extend to the non-uniqueness region and apply to all boundary conditions. We show that the spatial mixing conditions known as Variance Mixing and Entropy Mixing, introduced in the study of local Markov chains by Martinelli et al. (2003), imply Ω(1) spectral gap and O(log n) mixing time, respectively, for the Swendsen-Wang dynamics on the d-ary tree. We also show that these bounds are asymptotically optimal. As a consequence, we establish Θ(log n) mixing for the Swendsen-Wang dynamics for all boundary conditions throughout the tree uniqueness region; in fact, our bounds hold beyond the uniqueness threshold for the Ising model, and for the q-state Potts model when q is small with respect to d. Our proofs feature a novel spectral view of the Variance Mixing condition inspired by several recent rapid mixing results on high-dimensional expanders and utilize recent work on block factorization of entropy under spatial mixing conditions.

Cite as

Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda. The Swendsen-Wang Dynamics on Trees. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 43:1-43:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blanca_et_al:LIPIcs.APPROX/RANDOM.2021.43,
  author =	{Blanca, Antonio and Chen, Zongchen and \v{S}tefankovi\v{c}, Daniel and Vigoda, Eric},
  title =	{{The Swendsen-Wang Dynamics on Trees}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{43:1--43:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.43},
  URN =		{urn:nbn:de:0030-drops-147366},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.43},
  annote =	{Keywords: Markov Chains, mixing times, Ising and Potts models, Swendsen-Wang dynamics, trees}
}
Document
RANDOM
Distance Estimation Between Unknown Matrices Using Sublinear Projections on Hamming Cube

Authors: Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra


Abstract
Using geometric techniques like projection and dimensionality reduction, we show that there exists a randomized sub-linear time algorithm that can estimate the Hamming distance between two matrices. Consider two matrices A and B of size n × n whose dimensions are known to the algorithm but the entries are not. The entries of the matrix are real numbers. The access to any matrix is through an oracle that computes the projection of a row (or a column) of the matrix on a vector in {0,1}ⁿ. We call this query oracle to be an Inner Product oracle (shortened as IP). We show that our algorithm returns a (1± ε) approximation to {D}_M (A,B) with high probability by making O(n/(√{{D)_M (A,B)}}poly(log n, 1/(ε))) oracle queries, where {D}_M (A,B) denotes the Hamming distance (the number of corresponding entries in which A and B differ) between two matrices A and B of size n × n. We also show a matching lower bound on the number of such IP queries needed. Though our main result is on estimating {D}_M (A,B) using IP, we also compare our results with other query models.

Cite as

Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Distance Estimation Between Unknown Matrices Using Sublinear Projections on Hamming Cube. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 44:1-44:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bishnu_et_al:LIPIcs.APPROX/RANDOM.2021.44,
  author =	{Bishnu, Arijit and Ghosh, Arijit and Mishra, Gopinath},
  title =	{{Distance Estimation Between Unknown Matrices Using Sublinear Projections on Hamming Cube}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{44:1--44:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.44},
  URN =		{urn:nbn:de:0030-drops-147378},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.44},
  annote =	{Keywords: Distance estimation, Property testing, Dimensionality reduction, Sub-linear algorithms}
}
Document
RANDOM
Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

Authors: Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan


Abstract
Greedy decision tree learning heuristics are mainstays of machine learning practice, but theoretical justification for their empirical success remains elusive. In fact, it has long been known that there are simple target functions for which they fail badly (Kearns and Mansour, STOC 1996). Recent work of Brutzkus, Daniely, and Malach (COLT 2020) considered the smoothed analysis model as a possible avenue towards resolving this disconnect. Within the smoothed setting and for targets f that are k-juntas, they showed that these heuristics successfully learn f with depth-k decision tree hypotheses. They conjectured that the same guarantee holds more generally for targets that are depth-k decision trees. We provide a counterexample to this conjecture: we construct targets that are depth-k decision trees and show that even in the smoothed setting, these heuristics build trees of depth 2^{Ω(k)} before achieving high accuracy. We also show that the guarantees of Brutzkus et al. cannot extend to the agnostic setting: there are targets that are very close to k-juntas, for which these heuristics build trees of depth 2^{Ω(k)} before achieving high accuracy.

Cite as

Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Decision Tree Heuristics Can Fail, Even in the Smoothed Setting. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blanc_et_al:LIPIcs.APPROX/RANDOM.2021.45,
  author =	{Blanc, Guy and Lange, Jane and Qiao, Mingda and Tan, Li-Yang},
  title =	{{Decision Tree Heuristics Can Fail, Even in the Smoothed Setting}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.45},
  URN =		{urn:nbn:de:0030-drops-147386},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.45},
  annote =	{Keywords: decision trees, learning theory, smoothed analysis}
}
Document
RANDOM
On the Structure of Learnability Beyond P/Poly

Authors: Ninad Rajgopal and Rahul Santhanam


Abstract
Motivated by the goal of showing stronger structural results about the complexity of learning, we study the learnability of strong concept classes beyond P/poly, such as PSPACE/poly and EXP/poly. We show the following: 1) (Unconditional Lower Bounds for Learning) Building on [Adam R. Klivans et al., 2013], we prove unconditionally that BPE/poly cannot be weakly learned in polynomial time over the uniform distribution, even with membership and equivalence queries. 2) (Robustness of Learning) For the concept classes EXP/poly and PSPACE/poly, we show unconditionally that worst-case and average-case learning are equivalent, that PAC-learnability and learnability over the uniform distribution are equivalent, and that membership queries do not help in either case. 3) (Reducing Succinct Search to Decision for Learning) For the decision problems R_{Kt} and R_{KS} capturing the complexity of learning EXP/poly and PSPACE/poly respectively, we show a succinct search to decision reduction: for each of these problems, the problem is in BPP iff there is a probabilistic polynomial-time algorithm computing circuits encoding proofs for positive instances of the problem. This is shown via a more general result giving succinct search to decision results for PSPACE, EXP and NEXP, which might be of independent interest. 4) (Implausibility of Oblivious Strongly Black-Box Reductions showing NP-hardness of learning NP/poly) We define a natural notion of hardness of learning with respect to oblivious strongly black-box reductions. We show that learning PSPACE/poly is PSPACE-hard with respect to oblivious strongly black-box reductions. On the other hand, if learning NP/poly is NP-hard with respect to oblivious strongly black-box reductions, the Polynomial Hierarchy collapses.

Cite as

Ninad Rajgopal and Rahul Santhanam. On the Structure of Learnability Beyond P/Poly. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 46:1-46:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{rajgopal_et_al:LIPIcs.APPROX/RANDOM.2021.46,
  author =	{Rajgopal, Ninad and Santhanam, Rahul},
  title =	{{On the Structure of Learnability Beyond P/Poly}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{46:1--46:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.46},
  URN =		{urn:nbn:de:0030-drops-147395},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.46},
  annote =	{Keywords: Hardness of Learning, Oracle Circuit Classes, Succinct Search, Black-Box Reductions}
}
Document
RANDOM
The Critical Mean-Field Chayes-Machta Dynamics

Authors: Antonio Blanca, Alistair Sinclair, and Xusheng Zhang


Abstract
The random-cluster model is a unifying framework for studying random graphs, spin systems and electrical networks that plays a fundamental role in designing efficient Markov Chain Monte Carlo (MCMC) sampling algorithms for the classical ferromagnetic Ising and Potts models. In this paper, we study a natural non-local Markov chain known as the Chayes-Machta dynamics for the mean-field case of the random-cluster model, where the underlying graph is the complete graph on n vertices. The random-cluster model is parametrized by an edge probability p and a cluster weight q. Our focus is on the critical regime: p = p_c(q) and q ∈ (1,2), where p_c(q) is the threshold corresponding to the order-disorder phase transition of the model. We show that the mixing time of the Chayes-Machta dynamics is O(log n ⋅ log log n) in this parameter regime, which reveals that the dynamics does not undergo an exponential slowdown at criticality, a surprising fact that had been predicted (but not proved) by statistical physicists. This also provides a nearly optimal bound (up to the log log n factor) for the mixing time of the mean-field Chayes-Machta dynamics in the only regime of parameters where no non-trivial bound was previously known. Our proof consists of a multi-phased coupling argument that combines several key ingredients, including a new local limit theorem, a precise bound on the maximum of symmetric random walks with varying step sizes, and tailored estimates for critical random graphs. In addition, we derive an improved comparison inequality between the mixing time of the Chayes-Machta dynamics and that of the local Glauber dynamics on general graphs; this results in better mixing time bounds for the local dynamics in the mean-field setting.

Cite as

Antonio Blanca, Alistair Sinclair, and Xusheng Zhang. The Critical Mean-Field Chayes-Machta Dynamics. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 47:1-47:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blanca_et_al:LIPIcs.APPROX/RANDOM.2021.47,
  author =	{Blanca, Antonio and Sinclair, Alistair and Zhang, Xusheng},
  title =	{{The Critical Mean-Field Chayes-Machta Dynamics}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{47:1--47:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.47},
  URN =		{urn:nbn:de:0030-drops-147408},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.47},
  annote =	{Keywords: Markov Chains, Mixing Times, Random-cluster Model, Ising and Potts Models, Mean-field, Chayes-Machta Dynamics, Random Graphs}
}
Document
RANDOM
On the Robust Communication Complexity of Bipartite Matching

Authors: Sepehr Assadi and Soheil Behnezhad


Abstract
We study the robust - à la Chakrabarti, Cormode, and McGregor [STOC'08] - communication complexity of the maximum bipartite matching problem. The edges of an adversarially chosen n-vertex bipartite graph G are partitioned randomly between Alice and Bob. Alice has to send a single message to Bob, using which Bob has to output an approximate maximum matching of G. We are particularly interested in understanding the best approximation ratio possible by protocols that use a near-optimal message size of n ⋅ polylog(n). The communication complexity of bipartite matching in this setting under an adversarial partitioning is well-understood. In their beautiful paper, Goel, Kapralov, and Khanna [SODA'12] gave a rac{2} {3}-approximate protocol with O(n) communication and showed that this approximation is tight unless we allow more than a near-linear communication. The complexity of the robust version, i.e., with a random partitioning of the edges, however remains wide open. The best known protocol, implied by a very recent random-order streaming algorithm of the authors [ICALP'21], uses O(n log n) communication to obtain a (rac{2} {3} + ε₀)-approximation for a constant ε₀ ∼ 10^{-14}. The best known lower bound, on the other hand, leaves open the possibility of all the way up to even a (1-ε)-approximation using near-linear communication for constant ε > 0. In this work, we give a new protocol with a significantly better approximation. Particularly, our protocol achieves a 0.716 expected approximation using O(n) communication. This protocol is based on a new notion of distribution-dependent sparsifiers which give a natural way of sparsifying graphs sampled from a known distribution. We then show how to lift the assumption on knowing the graph’s distribution via minimax theorems. We believe this is a particularly powerful method of designing communication protocols and might find further applications.

Cite as

Sepehr Assadi and Soheil Behnezhad. On the Robust Communication Complexity of Bipartite Matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 48:1-48:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.APPROX/RANDOM.2021.48,
  author =	{Assadi, Sepehr and Behnezhad, Soheil},
  title =	{{On the Robust Communication Complexity of Bipartite Matching}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{48:1--48:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.48},
  URN =		{urn:nbn:de:0030-drops-147411},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.48},
  annote =	{Keywords: Maximum Matching, Communication Complexity, Random-Order Streaming}
}
Document
RANDOM
L1 Regression with Lewis Weights Subsampling

Authors: Aditya Parulekar, Advait Parulekar, and Eric Price


Abstract
We consider the problem of finding an approximate solution to 𝓁₁ regression while only observing a small number of labels. Given an n × d unlabeled data matrix X, we must choose a small set of m ≪ n rows to observe the labels of, then output an estimate β̂ whose error on the original problem is within a 1 + ε factor of optimal. We show that sampling from X according to its Lewis weights and outputting the empirical minimizer succeeds with probability 1-δ for m > O(1/(ε²) d log d/(ε δ)). This is analogous to the performance of sampling according to leverage scores for 𝓁₂ regression, but with exponentially better dependence on δ. We also give a corresponding lower bound of Ω(d/(ε²) + (d + 1/(ε²)) log 1/(δ)).

Cite as

Aditya Parulekar, Advait Parulekar, and Eric Price. L1 Regression with Lewis Weights Subsampling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 49:1-49:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{parulekar_et_al:LIPIcs.APPROX/RANDOM.2021.49,
  author =	{Parulekar, Aditya and Parulekar, Advait and Price, Eric},
  title =	{{L1 Regression with Lewis Weights Subsampling}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{49:1--49:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.49},
  URN =		{urn:nbn:de:0030-drops-147422},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.49},
  annote =	{Keywords: Active regression, Lewis weights}
}
Document
RANDOM
Hitting Sets for Orbits of Circuit Classes and Polynomial Families

Authors: Chandan Saha and Bhargav Thankey


Abstract
The orbit of an n-variate polynomial f(𝐱) over a field 𝔽 is the set {f(A𝐱+𝐛) : A ∈ GL(n,𝔽) and 𝐛 ∈ 𝔽ⁿ}. In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials computable by several natural and well-studied circuit classes and polynomial families. In particular, we give quasi-polynomial time hitting sets for the orbits of: 1) Low-individual-degree polynomials computable by commutative ROABPs. This implies quasi-polynomial time hitting sets for the orbits of the elementary symmetric polynomials. 2) Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-polynomial time hitting set for the orbits of the family {IMM_{3,d}}_{d ∈ ℕ}, which is complete for arithmetic formulas. 3) Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric and the sum-product polynomials. 4) Polynomials computable by occur-once formulas.

Cite as

Chandan Saha and Bhargav Thankey. Hitting Sets for Orbits of Circuit Classes and Polynomial Families. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 50:1-50:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{saha_et_al:LIPIcs.APPROX/RANDOM.2021.50,
  author =	{Saha, Chandan and Thankey, Bhargav},
  title =	{{Hitting Sets for Orbits of Circuit Classes and Polynomial Families}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{50:1--50:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.50},
  URN =		{urn:nbn:de:0030-drops-147433},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.50},
  annote =	{Keywords: Hitting Sets, Orbits, ROABPs, Rank Concentration}
}
Document
RANDOM
Sampling Multiple Edges Efficiently

Authors: Talya Eden, Saleet Mossel, and Ronitt Rubinfeld


Abstract
We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise ε-close to the uniform distribution, in an amortized-efficient fashion. We consider the adjacency list query model, where access to a graph G is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and Rosenbaum provided upper and lower bounds of Θ^*(n/√ m) for sampling a single edge in general graphs (where O^*(⋅) suppresses poly(1/ε) and poly(log n) dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples q in advance, has an overall cost that is sublinear in q, namely, O^*(√ q ⋅(n/√ m)), which is strictly preferable to O^*(q⋅ (n/√ m)) cost resulting from q invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, Tětek and Thorup (arXiv, preprint) proved that this bound is essentially optimal.

Cite as

Talya Eden, Saleet Mossel, and Ronitt Rubinfeld. Sampling Multiple Edges Efficiently. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 51:1-51:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{eden_et_al:LIPIcs.APPROX/RANDOM.2021.51,
  author =	{Eden, Talya and Mossel, Saleet and Rubinfeld, Ronitt},
  title =	{{Sampling Multiple Edges Efficiently}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{51:1--51:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.51},
  URN =		{urn:nbn:de:0030-drops-147441},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.51},
  annote =	{Keywords: Sampling edges, graph algorithm, sublinear algorithms}
}
Document
RANDOM
Lower Bounds for XOR of Forrelations

Authors: Uma Girish, Ran Raz, and Wei Zhan


Abstract
The Forrelation problem, first introduced by Aaronson [Scott Aaronson, 2010] and Aaronson and Ambainis [Scott Aaronson and Andris Ambainis, 2015], is a well studied computational problem in the context of separating quantum and classical computational models. Variants of this problem were used to give tight separations between quantum and classical query complexity [Scott Aaronson and Andris Ambainis, 2015]; the first separation between poly-logarithmic quantum query complexity and bounded-depth circuits of super-polynomial size, a result that also implied an oracle separation of the classes BQP and PH [Ran Raz and Avishay Tal, 2019]; and improved separations between quantum and classical communication complexity [Uma Girish et al., 2021]. In all these separations, the lower bound for the classical model only holds when the advantage of the protocol (over a random guess) is more than ≈ 1/√N, that is, the success probability is larger than ≈ 1/2 + 1/√N. This is unavoidable as ≈ 1/√N is the correlation between two coordinates of an input that is sampled from the Forrelation distribution, and hence there are simple classical protocols that achieve advantage ≈ 1/√N, in all these models. To achieve separations when the classical protocol has smaller advantage, we study in this work the xor of k independent copies of (a variant of) the Forrelation function (where k≪ N). We prove a very general result that shows that any family of Boolean functions that is closed under restrictions, whose Fourier mass at level 2k is bounded by α^k (that is, the sum of the absolute values of all Fourier coefficients at level 2k is bounded by α^k), cannot compute the xor of k independent copies of the Forrelation function with advantage better than O((α^k)/(N^{k/2})). This is a strengthening of a result of [Eshan Chattopadhyay et al., 2019], that gave a similar statement for k = 1, using the technique of [Ran Raz and Avishay Tal, 2019]. We give several applications of our result. In particular, we obtain the following separations: Quantum versus Classical Communication Complexity. We give the first example of a partial Boolean function that can be computed by a simultaneous-message quantum protocol with communication complexity polylog(N) (where Alice and Bob also share polylog(N) EPR pairs), and such that, any classical randomized protocol of communication complexity at most õ(N^{1/4}), with any number of rounds, has quasipolynomially small advantage over a random guess. Previously, only separations where the classical protocol has polynomially small advantage were known between these models [Dmitry Gavinsky, 2016; Uma Girish et al., 2021]. Quantum Query Complexity versus Bounded Depth Circuits. We give the first example of a partial Boolean function that has a quantum query algorithm with query complexity polylog(N), and such that, any constant-depth circuit of quasipolynomial size has quasipolynomially small advantage over a random guess. Previously, only separations where the constant-depth circuit has polynomially small advantage were known [Ran Raz and Avishay Tal, 2019].

Cite as

Uma Girish, Ran Raz, and Wei Zhan. Lower Bounds for XOR of Forrelations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 52:1-52:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{girish_et_al:LIPIcs.APPROX/RANDOM.2021.52,
  author =	{Girish, Uma and Raz, Ran and Zhan, Wei},
  title =	{{Lower Bounds for XOR of Forrelations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{52:1--52:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.52},
  URN =		{urn:nbn:de:0030-drops-147453},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.52},
  annote =	{Keywords: Forrelation, Quasipolynomial, Separation, Quantum versus Classical, Xor}
}
Document
RANDOM
Fourier Growth of Structured 𝔽₂-Polynomials and Applications

Authors: Jarosław Błasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio, and Emanuele Viola


Abstract
We analyze the Fourier growth, i.e. the L₁ Fourier weight at level k (denoted L_{1,k}), of various well-studied classes of "structured" m F₂-polynomials. This study is motivated by applications in pseudorandomness, in particular recent results and conjectures due to [Chattopadhyay et al., 2019; Chattopadhyay et al., 2019; Eshan Chattopadhyay et al., 2020] which show that upper bounds on Fourier growth (even at level k = 2) give unconditional pseudorandom generators. Our main structural results on Fourier growth are as follows: - We show that any symmetric degree-d m F₂-polynomial p has L_{1,k}(p) ≤ Pr [p = 1] ⋅ O(d)^k. This quadratically strengthens an earlier bound that was implicit in [Omer Reingold et al., 2013]. - We show that any read-Δ degree-d m F₂-polynomial p has L_{1,k}(p) ≤ Pr [p = 1] ⋅ (k Δ d)^{O(k)}. - We establish a composition theorem which gives L_{1,k} bounds on disjoint compositions of functions that are closed under restrictions and admit L_{1,k} bounds. Finally, we apply the above structural results to obtain new unconditional pseudorandom generators and new correlation bounds for various classes of m F₂-polynomials.

Cite as

Jarosław Błasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio, and Emanuele Viola. Fourier Growth of Structured 𝔽₂-Polynomials and Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 53:1-53:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blasiok_et_al:LIPIcs.APPROX/RANDOM.2021.53,
  author =	{B{\l}asiok, Jaros{\l}aw and Ivanov, Peter and Jin, Yaonan and Lee, Chin Ho and Servedio, Rocco A. and Viola, Emanuele},
  title =	{{Fourier Growth of Structured \mathbb{F}₂-Polynomials and Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{53:1--53:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.53},
  URN =		{urn:nbn:de:0030-drops-147462},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.53},
  annote =	{Keywords: Fourier analysis, Pseudorandomness, Fourier growth}
}
Document
RANDOM
Candidate Tree Codes via Pascal Determinant Cubes

Authors: Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan


Abstract
Tree codes are combinatorial structures introduced by Schulman [Schulman, 1993] as key ingredients in interactive coding schemes. Asymptotically-good tree codes are long known to exist, yet their explicit construction remains a notoriously hard open problem. Even proposing a plausible construction, without the burden of proof, is difficult and the defining tree code property requires structure that remains elusive. To the best of our knowledge, only one candidate appears in the literature, due to Moore and Schulman [Moore and Schulman, 2014]. We put forth a new candidate for an explicit asymptotically-good tree code. Our construction is an extension of the vanishing rate tree code by Cohen-Haeupler-Schulman [Cohen et al., 2018], and its correctness relies on a conjecture that we introduce on certain Pascal determinants indexed by the points of the Boolean hypercube. Furthermore, using the vanishing distance tree code by Gelles et al. [Gelles et al., 2016] enables us to present a construction that relies on an even weaker assumption. We furnish evidence supporting our conjecture through numerical computation, combinatorial arguments from planar path graphs and based on well-studied heuristics from arithmetic geometry.

Cite as

Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan. Candidate Tree Codes via Pascal Determinant Cubes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 54:1-54:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{benyaacov_et_al:LIPIcs.APPROX/RANDOM.2021.54,
  author =	{Ben Yaacov, Inbar and Cohen, Gil and Narayanan, Anand Kumar},
  title =	{{Candidate Tree Codes via Pascal Determinant Cubes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{54:1--54:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.54},
  URN =		{urn:nbn:de:0030-drops-147474},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.54},
  annote =	{Keywords: Tree codes, Sparse polynomials, Explicit constructions}
}
Document
RANDOM
Towards a Decomposition-Optimal Algorithm for Counting and Sampling Arbitrary Motifs in Sublinear Time

Authors: Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld


Abstract
We consider the problem of sampling and approximately counting an arbitrary given motif H in a graph G, where access to G is given via queries: degree, neighbor, and pair, as well as uniform edge sample queries. Previous algorithms for these tasks were based on a decomposition of H into a collection of odd cycles and stars, denoted D^*(H) = {O_{k₁},...,O_{k_q}, S_{p₁},...,S_{p_𝓁}}. These algorithms were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower bounds were known. We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, is always at least as good, and for most graphs G is strictly better. The main ingredient leading to this improvement is an improved uniform algorithm for sampling stars, which might be of independent interest, as it allows to sample vertices according to the p-th moment of the degree distribution. Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain at least one odd cycle. These are the first lower bounds for motifs H with a nontrivial decomposition, i.e., motifs that have more than a single component in their decomposition.

Cite as

Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld. Towards a Decomposition-Optimal Algorithm for Counting and Sampling Arbitrary Motifs in Sublinear Time. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 55:1-55:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{biswas_et_al:LIPIcs.APPROX/RANDOM.2021.55,
  author =	{Biswas, Amartya Shankha and Eden, Talya and Rubinfeld, Ronitt},
  title =	{{Towards a Decomposition-Optimal Algorithm for Counting and Sampling Arbitrary Motifs in Sublinear Time}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{55:1--55:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.55},
  URN =		{urn:nbn:de:0030-drops-147480},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.55},
  annote =	{Keywords: Sublinear time algorithms, Graph algorithms, Sampling subgraphs, Approximate counting}
}
Document
RANDOM
Ideal-Theoretic Explanation of Capacity-Achieving Decoding

Authors: Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan


Abstract
In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their encoding is the residue modulo the ideals. We present an alternate way of viewing this class of codes in terms of linear operators, and show that this alternate view makes their algorithmic list-decodability amenable to analysis. Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes (which are themselves a special case of the broader class we explore). These codes are common generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity codes, while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a large family of codes that were not previously known/studied. More significantly our framework also captures the algorithmic list-decodability of the constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal-theoretic codes and show that the decodability reduces to the analysis of the distance of some related codes. We show that good bounds on this distance lead to capacity-achieving performance of the underlying code, providing a unifying explanation of known capacity-achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that they are list-decodable up to capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes.

Cite as

Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan. Ideal-Theoretic Explanation of Capacity-Achieving Decoding. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 56:1-56:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhandari_et_al:LIPIcs.APPROX/RANDOM.2021.56,
  author =	{Bhandari, Siddharth and Harsha, Prahladh and Kumar, Mrinal and Sudan, Madhu},
  title =	{{Ideal-Theoretic Explanation of Capacity-Achieving Decoding}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{56:1--56:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.56},
  URN =		{urn:nbn:de:0030-drops-147499},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.56},
  annote =	{Keywords: List Decodability, List Decoding Capacity, Polynomial Ideal Codes, Multiplicity Codes, Folded Reed-Solomon Codes}
}
Document
RANDOM
Visible Rank and Codes with Locality

Authors: Omar Alrabiah and Venkatesan Guruswami


Abstract
We propose a framework to study the effect of local recovery requirements of codeword symbols on the dimension of linear codes, based on a combinatorial proxy that we call visible rank. The locality constraints of a linear code are stipulated by a matrix H of ⋆’s and 0’s (which we call a "stencil"), whose rows correspond to the local parity checks (with the ⋆’s indicating the support of the check). The visible rank of H is the largest r for which there is a r × r submatrix in H with a unique generalized diagonal of ⋆’s. The visible rank yields a field-independent combinatorial lower bound on the rank of H and thus the co-dimension of the code. We point out connections of the visible rank to other notions in the literature such as unique restricted graph matchings, matroids, spanoids, and min-rank. In particular, we prove a rank-nullity type theorem relating visible rank to the rank of an associated construct called symmetric spanoid, which was introduced by Dvir, Gopi, Gu, and Wigderson [Zeev Dvir et al., 2020]. Using this connection and a construction of appropriate stencils, we answer a question posed in [Zeev Dvir et al., 2020] and demonstrate that symmetric spanoid rank cannot improve the currently best known Õ(n^{(q-2)/(q-1)}) upper bound on the dimension of q-query locally correctable codes (LCCs) of length n. This also pins down the efficacy of visible rank as a proxy for the dimension of LCCs. We also study the t-Disjoint Repair Group Property (t-DRGP) of codes where each codeword symbol must belong to t disjoint check equations. It is known that linear codes with 2-DRGP must have co-dimension Ω(√n) (which is matched by a simple product code construction). We show that there are stencils corresponding to 2-DRGP with visible rank as small as O(log n). However, we show the second tensor of any 2-DRGP stencil has visible rank Ω(n), thus recovering the Ω(√n) lower bound for 2-DRGP. For q-LCC, however, the k'th tensor power for k ⩽ n^{o(1)} is unable to improve the Õ(n^{(q-2)/(q-1)}) upper bound on the dimension of q-LCCs by a polynomial factor.Inspired by this and as a notion of intrinsic interest, we define the notion of visible capacity of a stencil as the limiting visible rank of high tensor powers, analogous to Shannon capacity, and pose the question whether there can be large gaps between visible capacity and algebraic rank.

Cite as

Omar Alrabiah and Venkatesan Guruswami. Visible Rank and Codes with Locality. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 57:1-57:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{alrabiah_et_al:LIPIcs.APPROX/RANDOM.2021.57,
  author =	{Alrabiah, Omar and Guruswami, Venkatesan},
  title =	{{Visible Rank and Codes with Locality}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{57:1--57:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.57},
  URN =		{urn:nbn:de:0030-drops-147502},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.57},
  annote =	{Keywords: Visible Rank, Stencils, Locality, DRGP Codes, Locally Correctable Codes}
}
Document
RANDOM
Pseudorandom Generators for Read-Once Monotone Branching Programs

Authors: Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan


Abstract
Motivated by the derandomization of space-bounded computation, there has been a long line of work on constructing pseudorandom generators (PRGs) against various forms of read-once branching programs (ROBPs), with a goal of improving the O(log² n) seed length of Nisan’s classic construction [Noam Nisan, 1992] to the optimal O(log n). In this work, we construct an explicit PRG with seed length Õ(log n) for constant-width ROBPs that are monotone, meaning that the states at each time step can be ordered so that edges with the same labels never cross each other. Equivalently, for each fixed input, the transition functions are a monotone function of the state. This result is complementary to a line of work that gave PRGs with seed length O(log n) for (ordered) permutation ROBPs of constant width [Braverman et al., 2014; Koucký et al., 2011; De, 2011; Thomas Steinke, 2012], since the monotonicity constraint can be seen as the "opposite" of the permutation constraint. Our PRG also works for monotone ROBPs that can read the input bits in any order, which are strictly more powerful than read-once AC⁰. Our PRG achieves better parameters (in terms of the dependence on the depth of the circuit) than the best previous pseudorandom generator for read-once AC⁰, due to Doron, Hatami, and Hoza [Doron et al., 2019]. Our pseudorandom generator construction follows Ajtai and Wigderson’s approach of iterated pseudorandom restrictions [Ajtai and Wigderson, 1989; Gopalan et al., 2012]. We give a randomness-efficient width-reduction process which proves that the branching program simplifies to an O(log n)-junta after only O(log log n) independent applications of the Forbes-Kelley pseudorandom restrictions [Michael A. Forbes and Zander Kelley, 2018].

Cite as

Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan. Pseudorandom Generators for Read-Once Monotone Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 58:1-58:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2021.58,
  author =	{Doron, Dean and Meka, Raghu and Reingold, Omer and Tal, Avishay and Vadhan, Salil},
  title =	{{Pseudorandom Generators for Read-Once Monotone Branching Programs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{58:1--58:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.58},
  URN =		{urn:nbn:de:0030-drops-147513},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.58},
  annote =	{Keywords: Branching programs, pseudorandom generators, constant depth circuits}
}
Document
RANDOM
On the Power of Choice for k-Colorability of Random Graphs

Authors: Varsha Dani, Diksha Gupta, and Thomas P. Hayes


Abstract
In an r-choice Achlioptas process, random edges are generated r at a time, and an online strategy is used to select one of them for inclusion in a graph. We investigate the problem of whether such a selection strategy can shift the k-colorability transition; that is, the number of edges at which the graph goes from being k-colorable to non-k-colorable. We show that, for k ≥ 9, two choices suffice to delay the k-colorability threshold, and that for every k ≥ 2, six choices suffice.

Cite as

Varsha Dani, Diksha Gupta, and Thomas P. Hayes. On the Power of Choice for k-Colorability of Random Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 59:1-59:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dani_et_al:LIPIcs.APPROX/RANDOM.2021.59,
  author =	{Dani, Varsha and Gupta, Diksha and Hayes, Thomas P.},
  title =	{{On the Power of Choice for k-Colorability of Random Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{59:1--59:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.59},
  URN =		{urn:nbn:de:0030-drops-147527},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.59},
  annote =	{Keywords: Random graphs, Achlioptas Processes, Phase Transition, Graph Colorability}
}
Document
RANDOM
Memory-Sample Lower Bounds for Learning Parity with Noise

Authors: Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz


Abstract
In this work, we show, for the well-studied problem of learning parity under noise, where a learner tries to learn x = (x₁,…,x_n) ∈ {0,1}ⁿ from a stream of random linear equations over 𝔽₂ that are correct with probability 1/2+ε and flipped with probability 1/2-ε (0 < ε < 1/2), that any learning algorithm requires either a memory of size Ω(n²/ε) or an exponential number of samples. In fact, we study memory-sample lower bounds for a large class of learning problems, as characterized by [Garg et al., 2018], when the samples are noisy. A matrix M: A × X → {-1,1} corresponds to the following learning problem with error parameter ε: an unknown element x ∈ X is chosen uniformly at random. A learner tries to learn x from a stream of samples, (a₁, b₁), (a₂, b₂) …, where for every i, a_i ∈ A is chosen uniformly at random and b_i = M(a_i,x) with probability 1/2+ε and b_i = -M(a_i,x) with probability 1/2-ε (0 < ε < 1/2). Assume that k,𝓁, r are such that any submatrix of M of at least 2^{-k} ⋅ |A| rows and at least 2^{-𝓁} ⋅ |X| columns, has a bias of at most 2^{-r}. We show that any learning algorithm for the learning problem corresponding to M, with error parameter ε, requires either a memory of size at least Ω((k⋅𝓁)/ε), or at least 2^{Ω(r)} samples. The result holds even if the learner has an exponentially small success probability (of 2^{-Ω(r)}). In particular, this shows that for a large class of learning problems, same as those in [Garg et al., 2018], any learning algorithm requires either a memory of size at least Ω(((log|X|)⋅(log|A|))/ε) or an exponential number of noisy samples. Our proof is based on adapting the arguments in [Ran Raz, 2017; Garg et al., 2018] to the noisy case.

Cite as

Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz. Memory-Sample Lower Bounds for Learning Parity with Noise. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 60:1-60:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.APPROX/RANDOM.2021.60,
  author =	{Garg, Sumegha and Kothari, Pravesh K. and Liu, Pengda and Raz, Ran},
  title =	{{Memory-Sample Lower Bounds for Learning Parity with Noise}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{60:1--60:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.60},
  URN =		{urn:nbn:de:0030-drops-147534},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.60},
  annote =	{Keywords: memory-sample tradeoffs, learning parity under noise, space lower bound, branching program}
}
Document
RANDOM
Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

Authors: Reut Levi and Nadav Shoshan


Abstract
In this paper we provide sub-linear algorithms for several fundamental problems in the setting in which the input graph excludes a fixed minor, i.e., is a minor-free graph. In particular, we provide the following algorithms for minor-free unbounded degree graphs. 1) A tester for Hamiltonicity with two-sided error with poly(1/ε)-query complexity, where ε is the proximity parameter. 2) A local algorithm, as defined by Rubinfeld et al. (ICS 2011), for constructing a spanning subgraph with almost minimum weight, specifically, at most a factor (1+ε) of the optimum, with poly(1/ε)-query complexity. Both our algorithms use partition oracles, a tool introduced by Hassidim et al. (FOCS 2009), which are oracles that provide access to a partition of the graph such that the number of cut-edges is small and each part of the partition is small. The polynomial dependence in 1/ε of our algorithms is achieved by combining the recent poly(d/ε)-query partition oracle of Kumar-Seshadhri-Stolman (ECCC 2021) for minor-free graphs with degree bounded by d. For bounded degree minor-free graphs we introduce the notion of covering partition oracles which is a relaxed version of partition oracles and design a poly(d/ε)-time covering partition oracle for this family of graphs. Using our covering partition oracle we provide the same results as above (except that the tester for Hamiltonicity has one-sided error) for minor-free bounded degree graphs, as well as showing that any property which is monotone and additive (e.g. bipartiteness) can be tested in minor-free graphs by making poly(d/ε)-queries. The benefit of using the covering partition oracle rather than the partition oracle in our algorithms is its simplicity and an improved polynomial dependence in 1/ε in the obtained query complexity.

Cite as

Reut Levi and Nadav Shoshan. Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 61:1-61:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{levi_et_al:LIPIcs.APPROX/RANDOM.2021.61,
  author =	{Levi, Reut and Shoshan, Nadav},
  title =	{{Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{61:1--61:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.61},
  URN =		{urn:nbn:de:0030-drops-147540},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.61},
  annote =	{Keywords: Property Testing, Hamiltonian path, minor free graphs, sparse spanning sub-graphs}
}
Document
RANDOM
Parallel Repetition for the GHZ Game: A Simpler Proof

Authors: Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan


Abstract
We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the value of the game to zero polynomially quickly. That is, we show that the value of the n-fold GHZ game is at most n^{-Ω(1)}. This was first established by Holmgren and Raz [Holmgren and Raz, 2020]. We present a new proof of this theorem that we believe to be simpler and more direct. Unlike most previous works on parallel repetition, our proof makes no use of information theory, and relies on the use of Fourier analysis. The GHZ game [Greenberger et al., 1989] has played a foundational role in the understanding of quantum information theory, due in part to the fact that quantum strategies can win the GHZ game with probability 1. It is possible that improved parallel repetition bounds may find applications in this setting. Recently, Dinur, Harsha, Venkat, and Yuen [Dinur et al., 2017] highlighted the GHZ game as a simple three-player game, which is in some sense maximally far from the class of multi-player games whose behavior under parallel repetition is well understood. Dinur et al. conjectured that parallel repetition decreases the value of the GHZ game exponentially quickly, and speculated that progress on proving this would shed light on parallel repetition for general multi-player (multi-prover) games.

Cite as

Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan. Parallel Repetition for the GHZ Game: A Simpler Proof. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 62:1-62:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{girish_et_al:LIPIcs.APPROX/RANDOM.2021.62,
  author =	{Girish, Uma and Holmgren, Justin and Mittal, Kunal and Raz, Ran and Zhan, Wei},
  title =	{{Parallel Repetition for the GHZ Game: A Simpler Proof}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{62:1--62:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.62},
  URN =		{urn:nbn:de:0030-drops-147551},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.62},
  annote =	{Keywords: Parallel Repetition, GHZ, Polynomial, Multi-player}
}

Filters


Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail