In this work, we show the first worst-case to average-case reduction for the classical k-SUM problem. A k-SUM instance is a collection of m integers, and the goal of the k-SUM problem is to find a subset of k integers that sums to 0. In the average-case version, the m elements are chosen uniformly at random from some interval [-u,u]. We consider the total setting where m is sufficiently large (with respect to u and k), so that we are guaranteed (with high probability) that solutions must exist. In particular, m = u^{Ω(1/k)} suffices for totality. Much of the appeal of k-SUM, in particular connections to problems in computational geometry, extends to the total setting. The best known algorithm in the average-case total setting is due to Wagner (following the approach of Blum-Kalai-Wasserman), and achieves a running time of u^{Θ(1/log k)} when m = u^{Θ(1/log k)}. This beats the known (conditional) lower bounds for worst-case k-SUM, raising the natural question of whether it can be improved even further. However, in this work, we show a matching average-case lower bound, by showing a reduction from worst-case lattice problems, thus introducing a new family of techniques into the field of fine-grained complexity. In particular, we show that any algorithm solving average-case k-SUM on m elements in time u^{o(1/log k)} will give a super-polynomial improvement in the complexity of algorithms for lattice problems.
@InProceedings{brakerski_et_al:LIPIcs.APPROX/RANDOM.2021.29, author = {Brakerski, Zvika and Stephens-Davidowitz, Noah and Vaikuntanathan, Vinod}, title = {{On the Hardness of Average-Case k-SUM}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)}, pages = {29:1--29:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-207-5}, ISSN = {1868-8969}, year = {2021}, volume = {207}, editor = {Wootters, Mary and Sanit\`{a}, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.29}, URN = {urn:nbn:de:0030-drops-147223}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2021.29}, annote = {Keywords: k-SUM, fine-grained complexity, average-case hardness} }
Feedback for Dagstuhl Publishing