We consider online scheduling to minimize weighted completion time on related machines, where each job consists of several tasks that can be concurrently executed. A job gets completed when all its component tasks finish. We obtain an O(K³ log² K)-competitive algorithm in the non-clairvoyant setting, where K denotes the number of distinct machine speeds. The analysis is based on dual-fitting on a precedence-constrained LP relaxation that may be of independent interest.
@InProceedings{gupta_et_al:LIPIcs.APPROX/RANDOM.2021.3, author = {Gupta, Anupam and Kumar, Amit and Singla, Sahil}, title = {{Bag-Of-Tasks Scheduling on Related Machines}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)}, pages = {3:1--3:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-207-5}, ISSN = {1868-8969}, year = {2021}, volume = {207}, editor = {Wootters, Mary and Sanit\`{a}, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.3}, URN = {urn:nbn:de:0030-drops-146967}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2021.3}, annote = {Keywords: approximation algorithms, scheduling, bag-of-tasks, related machines} }
Feedback for Dagstuhl Publishing