The orbit of an n-variate polynomial f(𝐱) over a field 𝔽 is the set {f(A𝐱+𝐛) : A ∈ GL(n,𝔽) and 𝐛 ∈ 𝔽ⁿ}. In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials computable by several natural and well-studied circuit classes and polynomial families. In particular, we give quasi-polynomial time hitting sets for the orbits of: 1) Low-individual-degree polynomials computable by commutative ROABPs. This implies quasi-polynomial time hitting sets for the orbits of the elementary symmetric polynomials. 2) Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-polynomial time hitting set for the orbits of the family {IMM_{3,d}}_{d ∈ ℕ}, which is complete for arithmetic formulas. 3) Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric and the sum-product polynomials. 4) Polynomials computable by occur-once formulas.
@InProceedings{saha_et_al:LIPIcs.APPROX/RANDOM.2021.50, author = {Saha, Chandan and Thankey, Bhargav}, title = {{Hitting Sets for Orbits of Circuit Classes and Polynomial Families}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)}, pages = {50:1--50:26}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-207-5}, ISSN = {1868-8969}, year = {2021}, volume = {207}, editor = {Wootters, Mary and Sanit\`{a}, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.50}, URN = {urn:nbn:de:0030-drops-147433}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2021.50}, annote = {Keywords: Hitting Sets, Orbits, ROABPs, Rank Concentration} }
Feedback for Dagstuhl Publishing