A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

Authors David G. Harris, Fotis Iliopoulos, Vladimir Kolmogorov



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2021.31.pdf
  • Filesize: 0.76 MB
  • 25 pages

Document Identifiers

Author Details

David G. Harris
  • University of Maryland, College Park, MD, USA
Fotis Iliopoulos
  • Institute for Advanced Study, Princeton, NJ, USA
Vladimir Kolmogorov
  • Institute of Science and Technology, Klosterneuburg, Austria

Cite AsGet BibTex

David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov. A New Notion of Commutativity for the Algorithmic Lovász Local Lemma. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.31

Abstract

The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser & Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for convergence, many other natural questions can be asked about algorithms; for instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?". These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Probabilistic algorithms
  • Mathematics of computing → Combinatorics
Keywords
  • Lovász Local Lemma
  • Resampling
  • Moser-Tardos algorithm
  • latin transversal
  • commutativity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the Lovász local lemma. Journal of the ACM, 63(3):Article #22, 2016. URL: https://doi.org/10.1145/2818352.
  2. Dimitris Achlioptas, Fotis Iliopoulos, and Vladimir Kolmogorov. A local lemma for focused stochastic algorithms. SIAM Journal on Computing, 48(5):1583-1602, 2019. URL: https://doi.org/10.1137/16M109332X.
  3. Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair. Beyond the Lovász local lemma: Point to set correlations and their algorithmic applications. In Proc. 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 725-744, 2019. Google Scholar
  4. Noga Alon, Joel Spencer, and Prasad Tetali. Covering with latin transversals. Discrete applied mathematics, 57(1):1-10, 1995. Google Scholar
  5. Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scoppola. An improvement of the Lovász local lemma via cluster expansion. Combinatorics, Probability & Computing, 20(5):709-719, 2011. URL: https://doi.org/10.1017/S0963548311000253.
  6. Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algorithms for the Lovász local lemma. SIAM Journal on Computing, 42(6):2132-2155, 2013. URL: https://doi.org/10.1137/100799642.
  7. Antares Chen, David G. Harris, and Aravind Srinivasan. Partial resampling to approximate covering integer programs. Random Structures & Algorithms, pages 69-93, 2021. Google Scholar
  8. Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local lemma and graph coloring. Distributed Computing, 30(4):261-280, 2017. Google Scholar
  9. Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdos on his 60th birthday), Vol. II, pages 609-627. Colloq. Math. Soc. János Bolyai, Vol. 10. 1975. Google Scholar
  10. Paul Erdös and Joel Spencer. Lopsided Lovász local lemma and latin transversals. Discrete Applied Mathematics, 30(2-3):151-154, 1991. URL: https://doi.org/10.1016/0166-218X(91)90040-4.
  11. Bernhard Haeupler and David G. Harris. Parallel algorithms and concentration bounds for the Lovász local lemma via witness DAGs. ACM Transactions on Algorithms, 13(4):Article #25, 2017. Google Scholar
  12. Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the Lovász local lemma. Journal of the ACM, 58(6):Article #28, 2011. URL: https://doi.org/10.1145/2049697.2049702.
  13. David G. Harris. Lopsidependency in the Moser-Tardos framework: Beyond the lopsided Lovász local lemma. ACM Transactions on Algorithms, 13(1):Article #17, 2016. URL: https://doi.org/10.1145/3015762.
  14. David G. Harris. New bounds for the Moser-Tardos distribution. Random Structures & Algorithms, 57(1):97-131, 2020. Google Scholar
  15. David G. Harris. Oblivious resampling oracles and parallel algorithms for the Lopsided Lovász Local Lemma. ACM Transactions on Algorithms, 17(1):Article #1, 2021. Google Scholar
  16. David G. Harris and Aravind Srinivasan. Algorithmic and enumerative aspects of the Moser-Tardos distribution. ACM Transactions on Algorithms, 13(3):Article #33, 2017. Google Scholar
  17. David G. Harris and Aravind Srinivasan. A constructive Lovász Local Lemma for permutations. Theory of Computing, 13(1):Article #17, 2017. Google Scholar
  18. David G. Harris and Aravind Srinivasan. The Moser-Tardos framework with partial resampling. Journal of the ACM, 66(5):Article #36, 2019. Google Scholar
  19. Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma via resampling oracles. SIAM Journal on Computing, 49(2):394-428, 2020. Google Scholar
  20. Fotis Iliopoulos. Commutative algorithms approximate the LLL-distribution. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2018. Google Scholar
  21. Fotis Iliopoulos and Alistair Sinclair. Efficiently list-edge coloring multigraphs asymptotically optimally. In Proc. 14th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2319-2336, 2020. Google Scholar
  22. Kashyap Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In Proc. 43rd annual ACM Symposium on Theory of Computing (STOC), pages 235-244, 2011. Google Scholar
  23. Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. SIAM Journal on Computing, 47(6):2029-2056, 2018. Google Scholar
  24. László Lovász. Submodular functions and convexity. In Mathematical Programming: the State of the Art, pages 235-257. Springer, 1983. Google Scholar
  25. Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma. Journal of the ACM, 57(2):Article #11, 2010. URL: https://doi.org/10.1145/1667053.1667060.
  26. Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma. SIAM Journal on Discrete Mathematics, 28(2):911-917, 2014. URL: https://doi.org/10.1137/110828290.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail