In this paper, we study the weighted k-server problem on the uniform metric in both the offline and online settings. We start with the offline setting. In contrast to the (unweighted) k-server problem which has a polynomial-time solution using min-cost flows, there are strong computational lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we show that assuming the unique games conjecture, there are no polynomial-time algorithms with a sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore, if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap requires us to use at least 𝓁 resource augmentation, where 𝓁 is the number of distinct server weights. We complement these results by obtaining a constant-approximation algorithm via LP rounding, with a resource augmentation of (2+ε)𝓁 for any constant ε > 0. In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that 2𝓁-resource augmentation can bring the competitive ratio down by an exponential factor to only O(𝓁² log 𝓁). Our online algorithm uses the two-stage approach of first obtaining a fractional solution using the online primal-dual framework, and then rounding it online.
@InProceedings{gupta_et_al:LIPIcs.APPROX/RANDOM.2023.12, author = {Gupta, Anupam and Kumar, Amit and Panigrahi, Debmalya}, title = {{Efficient Algorithms and Hardness Results for the Weighted k-Server Problem}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)}, pages = {12:1--12:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-296-9}, ISSN = {1868-8969}, year = {2023}, volume = {275}, editor = {Megow, Nicole and Smith, Adam}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.12}, URN = {urn:nbn:de:0030-drops-188375}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2023.12}, annote = {Keywords: Online Algorithms, Weighted k-server, Integrality Gap, Hardness} }
Feedback for Dagstuhl Publishing