Giant Components in Random Temporal Graphs

Authors Ruben Becker , Arnaud Casteigts , Pierluigi Crescenzi , Bojana Kodric , Malte Renken , Michael Raskin , Viktor Zamaraev



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2023.29.pdf
  • Filesize: 0.81 MB
  • 17 pages

Document Identifiers

Author Details

Ruben Becker
  • Ca’ Foscari University of Venice, Italy
Arnaud Casteigts
  • University of Geneva, Switzerland
Pierluigi Crescenzi
  • Gran Sasso Science Institute, L’Aquila, Italy
Bojana Kodric
  • Ca’ Foscari University of Venice, Italy
Malte Renken
  • Technical University of Berlin, Germany
Michael Raskin
  • LaBRI, CNRS, University of Bordeaux, France
Viktor Zamaraev
  • University of Liverpool, UK

Cite AsGet BibTex

Ruben Becker, Arnaud Casteigts, Pierluigi Crescenzi, Bojana Kodric, Malte Renken, Michael Raskin, and Viktor Zamaraev. Giant Components in Random Temporal Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.29

Abstract

A temporal graph is a graph whose edges appear only at certain points in time. In these graphs, reachability among nodes relies on paths that traverse edges in chronological order (temporal paths). Unlike standard paths, temporal paths may not be composable, thus the reachability relation is not transitive and connected components (i.e., sets of pairwise temporally connected nodes) do not form equivalence classes, a fact with far-reaching consequences. Recently, Casteigts et al. [FOCS 2021] proposed a natural temporal analog of the seminal Erdős-Rényi random graph model, based on the same parameters n and p. The proposed model is obtained by randomly permuting the edges of an Erdős-Rényi random graph and interpreting this permutation as an ordering of presence times. Casteigts et al. showed that the well-known single threshold for connectivity in the Erdős-Rényi model fans out into multiple phase transitions for several distinct notions of reachability in the temporal setting. The second most basic phenomenon studied by Erdős and Rényi in static (i.e., non-temporal) random graphs is the emergence of a giant connected component. However, the existence of a similar phase transition in the temporal model was left open until now. In this paper, we settle this question. We identify a sharp threshold at p = log n/n, where the size of the largest temporally connected component increases from o(n) to n-o(n) nodes. This transition occurs significantly later than in the static setting, where a giant component of size n-o(n) already exists for any p ∈ ω(1/n) (i.e., as soon as p is larger than a constant fraction of n). Interestingly, the threshold that we obtain holds for both open and closed connected components, i.e., components that allow, respectively forbid, their connecting paths to use external nodes - a distinction arising from the absence of transitivity. We achieve these results by strengthening the tools from Casteigts et al. and developing new techniques that provide means to decouple dependencies between past and future events in temporal Erdős-Rényi graphs, which could be of general interest in future investigations of these objects.

Subject Classification

ACM Subject Classification
  • Theory of computation → Random network models
  • Mathematics of computing → Random graphs
Keywords
  • random temporal graph
  • Erdős–Rényi random graph
  • sharp threshold
  • temporal connectivity
  • temporal connected component
  • edge-ordered graph

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907-944, 2017. URL: https://doi.org/10.1007/s00224-017-9757-x.
  2. Eleni C. Akrida, George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos, Paul G. Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic temporal graphs? Journal of Computer and System Sciences, 114:65-83, 2020. URL: https://doi.org/10.1016/j.jcss.2020.05.005.
  3. Albert-László Barabási. Network Science. Cambridge University Press, 2016. Google Scholar
  4. Albert-Lázló Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, 1999. URL: https://doi.org/10.1126/science.286.5439.509.
  5. Hervé Baumann, Pierluigi Crescenzi, and Pierre Fraigniaud. Parsimonious flooding in dynamic graphs. Distributed Computing, 24(1):31-44, 2011. URL: https://doi.org/10.1007/s00446-011-0133-9.
  6. Sandeep Bhadra and Afonso Ferreira. Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In Proceedings of the 2nd International Conference on Ad-Hoc Networks and Wireless (ADHOC-NOW), pages 259-270, 2003. URL: https://doi.org/10.1007/978-3-540-39611-6_23.
  7. Béla Bollobás. Random Graphs. Cambridge University Press, 2 edition, 2001. URL: https://doi.org/10.1017/CBO9780511814068.
  8. Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding temporal paths under waiting time constraints. Algorithmica, 83(9):2754-2802, 2021. URL: https://doi.org/10.1007/s00453-021-00831-w.
  9. Arnaud Casteigts, Michael Raskin, Malte Renken, and Viktor Zamaraev. Sharp thresholds in random simple temporal graphs. In Proceedings of the 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 319-326, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00040.
  10. Augustin Chaintreau, Abderrahmen Mtibaa, Laurent Massoulie, and Christophe Diot. The diameter of opportunistic mobile networks. In Proceedings of the 3rd International Conference on Emerging Networking Experiments and Technologies (CoNEXT), pages 1-12, 2007. URL: https://doi.org/10.1145/1364654.1364670.
  11. Andrea Clementi, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri. Broadcasting in dynamic radio networks. Journal of Computer and System Sciences, 75(4):213-230, 2009. URL: https://doi.org/10.1016/J.JCSS.2008.10.004.
  12. Andrea E. F. Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri. Flooding time of edge-markovian evolving graphs. SIAM Journal on Discrete Mathematics, 24(4):1694-1712, 2010. URL: https://doi.org/10.1137/090756053.
  13. Alessio Conte, Pierluigi Crescenzi, Andrea Marino, and Giulia Punzi. Enumeration of s-d separators in DAGs with application to reliability analysis in temporal graphs. In Proceedings of the 45th International Symposium on Mathematical Foundations of Computer Science (MFCS), pages 25:1-25:14, 2020. URL: https://doi.org/10.4230/LIPIcs.MFCS.2020.25.
  14. Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges to restrict the size of an epidemic in temporal networks. Journal of Computer and System Sciences, 119:60-77, 2021. URL: https://doi.org/10.1016/j.jcss.2021.01.007.
  15. Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in temporal graphs. Journal of Computer and System Sciences, 115:169-186, 2021. URL: https://doi.org/10.1016/j.jcss.2020.08.001.
  16. P. Erdős and A. Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 6:290-297, 1959. URL: https://publi.math.unideb.hu/load_doc.php?p=2769&t=pap.
  17. P. Erdős and A. Rényi. On the strength of connectedness of a random graph. Acta Mathematica Academiae Scientiarum Hungarica, 12(1):261-267, 1964. URL: https://doi.org/10.1007/BF02066689.
  18. P. Erdős and A. Rényi. On the existence of a factor of degree one of a connected random graph. Acta Mathematica Academiae Scientiarum Hungarica, 17:359-368, 1966. URL: https://doi.org/10.1007/BF01894879.
  19. P. Erdős and A. Rényi. On the evolution of random graphs. A Magyar Tudományos Akadémia. Matematikai Kutató Intézetének Közleményei, 5:17-61, 1960. URL: http://www.renyi.hu/~p_erdos/1960-10.pdf.
  20. Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. Temporal graph classes: A view through temporal separators. Theoretical Computer Science, 806:197-218, 2020. URL: https://doi.org/10.1016/j.tcs.2019.03.031.
  21. Alan Frieze and Michał Karoński. Introduction to Random Graphs. Cambridge University Press, 2015. URL: https://doi.org/10.1017/CBO9781316339831.
  22. Emmanuel Godard and Dorian Mazauric. Computing the dynamic diameter of non-deterministic dynamic networks is hard. In Proceedings of the 10th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS), pages 88-102, 2014. URL: https://doi.org/10.1007/978-3-662-46018-4_6.
  23. Peter Grindrod and Desmond J. Higham. Evolving graphs: dynamical models, inverse problems and propagation. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 466(2115):753-770, 2010. URL: https://doi.org/10.1098/rspa.2009.0456.
  24. Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 519(3):97-125, 2012. URL: https://doi.org/10.1016/j.physrep.2012.03.001.
  25. Petter Holme and Jari Saramäki, editors. Temporal Network Theory. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-23495-9.
  26. Richard M. Karp. The transitive closure of a random digraph. Random Structures & Algorithms, 1(1):73-93, 1990. URL: https://doi.org/10.1002/rsa.3240010106.
  27. David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for temporal networks. Journal of Computer and System Sciences, 64(4):820-842, 2002. URL: https://doi.org/10.1006/jcss.2002.1829.
  28. Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree sequence. Random Structures & Algorithms, 6(2-3):161-180, 1995. URL: https://doi.org/10.1002/RSA.3240060204.
  29. Michael Molloy and Bruce Reed. The size of the giant component of a random graph with a given degree sequence. Combinatorics, Probability and Computing, 7(3):295-305, 1998. URL: https://doi.org/10.1017/S0963548398003526.
  30. M. E. J. Newman. The structure and function of complex networks. SIAM review, 45(2):167-256, 2003. URL: https://doi.org/10.1137/S003614450342480.
  31. M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64(2):026118, 2001. URL: https://doi.org/10.1103/PhysRevE.64.026118.
  32. Mark Newman. Networks. Oxford University Press, 2018. URL: https://doi.org/10.1093/oso/9780198805090.001.0001.
  33. John Tang, Ilias Leontiadis, Salvatore Scellato, Vincenzo Nicosia, Cecilia Mascolo, Mirco Musolesi, and Vito Latora. Applications of temporal graph metrics to real-world networks. In Temporal Networks, pages 135-159. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-36461-7_7.
  34. D. Watts and S. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440-442, 1998. URL: https://doi.org/10.1038/30918.
  35. Xiao Zhang, Cristopher Moore, and Mark Newman. Random graph models for dynamic networks. The European Physical Journal B, 90(10):1-14, 2017. URL: https://doi.org/10.1140/epjb/e2017-80122-8.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail