Document

# Testing Versus Estimation of Graph Properties, Revisited

## File

LIPIcs.APPROX-RANDOM.2023.46.pdf
• Filesize: 0.73 MB
• 18 pages

## Cite As

Lior Gishboliner, Nick Kushnir, and Asaf Shapira. Testing Versus Estimation of Graph Properties, Revisited. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 46:1-46:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.46

## Abstract

A graph G on n vertices is ε-far from property P if one should add/delete at least ε n² edges to turn G into a graph satisfying P. A distance estimator for P is an algorithm that given G and α, ε > 0 distinguishes between the case that G is (α-ε)-close to 𝒫 and the case that G is α-far from 𝒫. If P has a distance estimator whose query complexity depends only on ε, then P is said to be estimable. Every estimable property is clearly also testable, since testing corresponds to estimating with α = ε. A central result in the area of property testing is the Fischer-Newman theorem, stating that an inverse statement also holds, that is, that every testable property is in fact estimable. The proof of Fischer and Newmann was highly ineffective, since it incurred a tower-type loss when transforming a testing algorithm for P into a distance estimator. This raised the natural problem, studied recently by Fiat-Ron and by Hoppen-Kohayakawa-Lang-Lefmann-Stagni, whether one can find a transformation with a polynomial loss. We obtain the following results. - We show that if P is hereditary, then one can turn a tester for P into a distance estimator with an exponential loss. This is an exponential improvement over the result of Hoppen et. al., who obtained a transformation with a double exponential loss. - We show that for every P, one can turn a testing algorithm for P into a distance estimator with a double exponential loss. This improves over the transformation of Fischer-Newman that incurred a tower-type loss. Our main conceptual contribution in this work is that we manage to turn the approach of Fischer-Newman, which was inherently ineffective, into an efficient one. On the technical level, our main contribution is in establishing certain properties of Frieze-Kannan Weak Regular partitions that are of independent interest.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Approximation algorithms
##### Keywords
• Testing
• estimation
• weak regularity
• randomized algorithms
• graph theory
• Frieze-Kannan Regularity

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. N. Alon, B. Chazelle, S. Comandur, and D. Liue. Estimating the distance to a monotone function. Random Struct Algorithms, 31:371-383, 2007.
2. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. Combinatorica, 20:451-476, 2000.
3. N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the testable graph properties: it’s all about regularity,. SIAM J Comput, 39:143-167, 2009.
4. N. Alon and J. Fox. Easily testable graph properties. Combin Probab. Comput, 24:646-657, 2015.
5. N. Alon and A. Shapira. A characterization of the (natural) graph properties testable with one-sided error. SIAM J Comput., 37:1703-1727, 2008.
6. T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and R. Sami. A sublinear algorithm for weakly approximating edit distance. ACM Comput Surv., 35:316-324, 2003.
7. T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White. Testing closeness of discrete distributions. Journal of the ACM, 60:1-25, 2013.
8. P. Berman, M. Murzabulatov, and S. Raskhodnikova. Tolerant testers of image properties. Proc. of ICALP, pages 1-14, 2016.
9. E. Blais, C. Canonne, T. Eden, A. Levi, and D. Ron. Tolerant junta testing and the connection to submodular optimization and function isomorphism. ACM Trans Comput. Theory, 11, 2019.
10. C. Borgs, J. Chayes, L. Lovász, V. T. Sós, B. Szegedy, and K. Vesztergombi. Graph limits and parameter testing. Proc. of STOC, pages 261-270, 2006.
11. A. Campagna, A. Guo, and R. Rubinfeld. Local reconstructors and tolerant testers for connectivity and diameter. Proc. of APPROX, pages 411-424, 2013.
12. D. Conlon and J. Fox. Bounds for graph regularity and removal lemmas. Geom Funct. Anal, 22:1191-1256, 2012.
13. T. Eden, R. Levi, and D. Ron. Testing bounded arboricity. Proc. of SODA, pages 2081-2092, 2018.
14. N. Fiat and D. Ron. On efficient distance approximation for graph properties. Proc. of SODA, pages 1618-1637, 2021.
15. E. Fischer and L. Fortnow. Tolerant versus intolerant testing for boolean properties. Theory Comput., 2:173-183, 2006.
16. E. Fischer and I. Newman. Testing versus estimation of graph properties. SIAM J Comput., 37:482-501, 2007.
17. A. Frieze and R. Kannan. The regularity lemma and approximation schemes for dense problems. Proc. of FOCS, pages 12-20, 1996.
18. A. Frieze and R. Kannan. Quick approximation to matrices and applications. Combinatorica, 19:175-220, 1999.
19. L. Gishboliner and A. Shapira. Removal lemmas with polynomial bounds. Proc. of STOC, pages 510-522, 2017.
20. O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
21. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. Journal of the ACM, 45:653-750, 1998.
22. O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random Struct Algorithms, 23:23-57, 2003.
23. V. Guruswami and A. Rudra. Tolerant locally testable codes. Proc. of RANDOM, pages 306-317, 2005.
24. C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann, and H. Stagni. Estimating parameters associated with monotone properties,. Combin. Probab. Comput., 29(2020):616-632, 2016.
25. C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann, and H. Stagni. On the query complexity of estimating the distance to hereditary graph properties. SIAM J Discret. Math., 35:1238-1251, 2021.
26. S. Kopparty and S. Saraf. Tolerant linearity testing and locally testable codes. Proc. of RANDOM, pages 601-614, 2009.
27. L. Lovász and B. Szegedy. Szemerédi’s lemma for the analyst. Geom. Funct. Anal, 17:252-270, 2007.
28. S. Marko and D. Ron. Distance approximation in bounded-degree and general sparse graphs. ACM Trans. Algorithms, 5:22:1-22:28, 2009.
29. G. Moshkovitz and A. Shapira. A sparse regular approximation lemma. Trans. Amer. Math. Soc., 371:6779-6814, 2019.
30. M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation. J. Comput. Syst. Sci., 72:1012-1042, 2006.
31. V. Rödl and R. Duke. On graphs with small subgraphs of large chromatic number. Graphs and Combinatorics, 1:91-96, 1985.
32. V. Rödl and M. Schacht. Generalizations of the removal lemma. Combinatorica, 29:467-501, 2009.
33. V. Rödl and M. Schacht. Regularity lemmas for graphs. Fete of Combinatorics and Computer Science, vol. 20 series, Bolyai Soc Math. Stud, pages 287-325, 2010.
34. A. Shapira and H. Stagni. A tight bound for testing partition properties. 2023.
35. E. Szemerédi. Regular partitions of graphs, 1978. In Proc. Colloque Inter CNRS (J. C. Bermond, J. C. Fournier, M. Las Vergnas and D. Sotteau, eds.).