The Telephone k-Multicast Problem

Authors Daniel Hathcock , Guy Kortsarz, R. Ravi



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2024.21.pdf
  • Filesize: 0.8 MB
  • 16 pages

Document Identifiers

Author Details

Daniel Hathcock
  • Carnegie Mellon University, United States
Guy Kortsarz
  • Rutgers University, Camden, United States
R. Ravi
  • Carnegie Mellon University, United States

Cite AsGet BibTex

Daniel Hathcock, Guy Kortsarz, and R. Ravi. The Telephone k-Multicast Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.21

Abstract

We consider minimum time multicasting problems in directed and undirected graphs: given a root node and a subset of t terminal nodes, multicasting seeks to find the minimum number of rounds within which all terminals can be informed with a message originating at the root. In each round, the telephone model we study allows the information to move via a matching from the informed nodes to the uninformed nodes. Since minimum time multicasting in digraphs is poorly understood compared to the undirected variant, we study an intermediate problem in undirected graphs that specifies a target k < t, and requires the only k of the terminals be informed in the minimum number of rounds. For this problem, we improve implications of prior results and obtain an Õ(t^{1/3}) multiplicative approximation. For the directed version, we obtain an additive Õ(k^{1/2}) approximation algorithm (with a poly-logarithmic multiplicative factor). Our algorithms are based on reductions to the related problems of finding k-trees of minimum poise (sum of maximum degree and diameter) and applying a combination of greedy network decomposition techniques and set covering under partition matroid constraints.

Subject Classification

ACM Subject Classification
  • Theory of computation → Routing and network design problems
Keywords
  • Network Design
  • Multicast
  • Steiner Poise

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740-1766, 2011. URL: https://doi.org/10.1137/080733991.
  2. Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epidemic algorithms for replicated database maintenance. In Fred B. Schneider, editor, Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, August 10-12, 1987, pages 1-12. ACM, 1987. URL: https://doi.org/10.1145/41840.41841.
  3. M. Elkin and G. Kortsarz. An approximation algorithm for the directed telephone multicast problem. Algorithmica, 45(4):569-583, 2006. URL: https://doi.org/10.1007/s00453-005-1196-4.
  4. Michael Elkin and Guy Kortsarz. A combinatorial logarithmic approximation algorithm for the directed telephone broadcast problem. SIAM J. Comput., 35(3):672-689, 2005. URL: https://doi.org/10.1137/S0097539704440740.
  5. Michael Elkin and Guy Kortsarz. Sublogarithmic approximation for telephone multicast. J. Comput. Syst. Sci., 72(4):648-659, 2006. URL: https://doi.org/10.1016/j.jcss.2005.12.002.
  6. M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maximizing submodular set functions - II, pages 73-87. Springer Berlin Heidelberg, Berlin, Heidelberg, 1978. URL: https://doi.org/10.1007/BFb0121195.
  7. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Complex behavior at scale: An experimental study of low-power wireless sensor networks. Technical report, UCLA/CSD-TR 02, 2002. Google Scholar
  8. Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Liestman. A survey of gossiping and broadcasting in communication networks. Networks, pages 319-349, 1988. URL: https://doi.org/10.1002/net.3230180406.
  9. R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  10. Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. On some network design problems with degree constraints. J. Comput. Syst. Sci., 79(5):725-736, 2013. URL: https://doi.org/10.1016/j.jcss.2013.01.019.
  11. Guy Kortsarz and Zeev Nutov. The minimum degree group steiner problem. Discret. Appl. Math., 309:229-239, 2022. URL: https://doi.org/10.1016/j.dam.2021.12.003.
  12. Gueorgi Kossinets, Jon Kleinberg, and Duncan Watts. The structure of information pathways in a social communication network. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 435-443, 2008. URL: https://doi.org/10.1145/1401890.1401945.
  13. D. R. Kowalski and A. Pelc. Optimal deterministic broadcasting in known topology radio networks. Distributed Comput., 19(3):185-195, 2007. URL: https://doi.org/10.1007/s00446-006-0007-8.
  14. Afshin Nikzad and R. Ravi. Sending secrets swiftly: Approximation algorithms for generalized multicast problems. In ICALP, pages 568-607, 2014. URL: https://doi.org/10.1007/978-3-662-43951-7_48.
  15. Melih Onus and Andréa W. Richa. Minimum maximum-degree publish-subscribe overlay network design. IEEE/ACM Trans. Netw., 19(5):1331-1343, 2011. URL: https://doi.org/10.1109/TNET.2011.2144999.
  16. David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, 2000. URL: https://doi.org/10.1137/1.9780898719772.
  17. Da Qi Chen, Lin An, Aidin Niaparast, R Ravi, and Oleksandr Rudenko. Timeliness through telephones: Approximating information freshness in vector clock models. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2411-2428. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch93.
  18. R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast time (extended abstract). In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 202-213. IEEE Computer Society, 1994. URL: https://doi.org/10.1109/SFCS.1994.365693.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail