Document

# Analysis of Summatory Functions of Regular Sequences: Transducer and Pascal's Rhombus

## File

LIPIcs.AofA.2018.27.pdf
• Filesize: 0.67 MB
• 18 pages

## Cite As

Clemens Heuberger, Daniel Krenn, and Helmut Prodinger. Analysis of Summatory Functions of Regular Sequences: Transducer and Pascal's Rhombus. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.AofA.2018.27

## Abstract

The summatory function of a q-regular sequence in the sense of Allouche and Shallit is analysed asymptotically. The result is a sum of periodic fluctuations multiplied by a scaling factor. Each summand corresponds to an eigenvalues of absolute value larger than the joint spectral radius of the matrices of a linear representation of the sequence. The Fourier coefficients of the fluctuations are expressed in terms of residues of the corresponding Dirichlet generating function. A known pseudo Tauberian argument is extended in order to overcome convergence problems in Mellin-Perron summation. Two examples are discussed in more detail: The case of sequences defined as the sum of outputs written by a transducer when reading a q-ary expansion of the input and the number of odd entries in the rows of Pascal's rhombus.

## Subject Classification

##### ACM Subject Classification
• Mathematics of computing → Enumeration
• Mathematics of computing → Combinatoric problems
• Mathematics of computing → Generating functions
• Theory of computation → Formal languages and automata theory
##### Keywords
• Regular sequence
• Mellin-Perron summation
• summatory function
• transducer
• Pascal's rhombus

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Jean-Paul Allouche, Michel Mendès France, and Jacques Peyrière. Automatic Dirichlet series. J. Number Theory, 81(2):359-373, 2000. URL: http://dx.doi.org/10.1006/jnth.1999.2487.
2. Jean-Paul Allouche and Jeffrey Shallit. The ring of k-regular sequences. Theoret. Comput. Sci., 98(2):163-197, 1992. URL: http://dx.doi.org/10.1016/0304-3975(92)90001-V.
3. Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences: Theory, applications, generalizations. Cambridge University Press, Cambridge, 2003. URL: http://dx.doi.org/10.1017/CBO9780511546563.
4. Valérie Berthé, Loïck Lhote, and Brigitte Vallée. Probabilistic analyses of the plain multiple gcd algorithm. J. Symbolic Comput., 74:425-474, 2016. URL: http://dx.doi.org/10.1016/j.jsc.2015.08.007.
5. Valérie Berthé and Michel Rigo, editors. Combinatorics, automata and number theory, volume 135 of Encyclopedia Math. Appl. Cambridge University Press, Cambridge, 2010. URL: http://dx.doi.org/10.1017/CBO9780511777653.
6. Hubert Delange. Sur la fonction sommatoire de la fonction "somme des chiffres". Enseignement Math. (2), 21:31-47, 1975.
7. Michael Drmota and Peter J. Grabner. Analysis of digital functions and applications. In Valérie Berthé and Michel Rigo, editors, Combinatorics, automata and number theory, volume 135 of Encyclopedia Math. Appl., pages 452-504. Cambridge University Press, Cambridge, 2010. URL: http://dx.doi.org/10.1017/CBO9780511777653.010.
8. Michael Drmota and Wojciech Szpankowski. A master theorem for discrete divide and conquer recurrences. J. ACM, 60(3):Art. 16, 49 pp., 2013. URL: http://dx.doi.org/10.1145/2487241.2487242.
9. Philippe Dumas. Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences. Linear Algebra Appl., 438(5):2107-2126, 2013. URL: http://dx.doi.org/10.1016/j.laa.2012.10.013.
10. Philippe Dumas. Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Algebraic and analytic approaches collated. Theoret. Comput. Sci., 548:25-53, 2014. URL: http://dx.doi.org/10.1016/j.tcs.2014.06.036.
11. Philippe Dumas, Helger Lipmaa, and Johan Wallén. Asymptotic behaviour of a non-commutative rational series with a nonnegative linear representation. Discrete Math. Theor. Comput. Sci., 9(1):247-272, 2007. URL: https://dmtcs.episciences.org/399.
12. Philippe Flajolet, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger, and Robert F. Tichy. Mellin transforms and asymptotics: digital sums. Theoret. Comput. Sci., 123:291-314, 1994. URL: http://dx.doi.org/10.1016/0304-3975(92)00065-Y.
13. John Goldwasser, William Klostermeyer, Michael Mays, and George Trapp. The density of ones in Pascal’s rhombus. Discrete Math., 204(1-3):231-236, 1999. URL: http://dx.doi.org/10.1016/S0012-365X(98)00373-2.
14. Peter J. Grabner and Clemens Heuberger. On the number of optimal base 2 representations of integers. Des. Codes Cryptogr., 40(1):25-39, 2006. URL: http://dx.doi.org/10.1007/s10623-005-6158-y.
15. Peter J. Grabner, Clemens Heuberger, and Helmut Prodinger. Counting optimal joint digit expansions. Integers, 5(3):A9, 2005. URL: http://www.integers-ejcnt.org/vol5-3.html.
16. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics. A foundation for computer science. Addison-Wesley, second edition, 1994.
17. Clemens Heuberger, Daniel Krenn, and Helmut Prodinger. Analysis of summatory functions of regular sequences: Transducer and Pascal’s rhombus. arXiv:1802.03266 [math.CO], 2018. URL: https://arxiv.org/abs/1802.03266.
18. Clemens Heuberger, Sara Kropf, and Helmut Prodinger. Output sum of transducers: Limiting distribution and periodic fluctuation. Electron. J. Combin., 22(2):1-53, 2015. URL: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p19.
19. Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai. Exact and asymptotic solutions of a divide-and-conquer recurrence dividing at half: Theory and applications. ACM Trans. Algorithms, 13(4):Art. 47, 43 pp., 2017. URL: http://dx.doi.org/10.1145/3127585.