A 2-Categorical Approach to Composing Quantum Structures

Authors David Reutter, Jamie Vicary



PDF
Thumbnail PDF

File

LIPIcs.CALCO.2017.20.pdf
  • Filesize: 0.59 MB
  • 20 pages

Document Identifiers

Author Details

David Reutter
Jamie Vicary

Cite As Get BibTex

David Reutter and Jamie Vicary. A 2-Categorical Approach to Composing Quantum Structures. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.CALCO.2017.20

Abstract

We present an infinite number of construction schemes for quantum structures, including unitary error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which have not previously been described. Our results rely on the type structure of biunitary connections,  2-categorical structures which play a central role in the theory of planar algebras. They have an attractive graphical calculus which allows simple correctness proofs for the constructions we present. We apply these techniques to construct a unitary error basis that cannot be built using any previously known method.

Subject Classification

Keywords
  • quantum constructions
  • 2-category
  • graphical calculus
  • planar algebra

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In Proceedings of LICS, 2004. URL: http://dx.doi.org/10.1109/lics.2004.1319636.
  2. Samson Abramsky and Bob Coecke. Categorical quantum mechanics. In Handbook of Quantum Logic and Quantum Structures, pages 261-323. Elsevier, 2009. URL: http://dx.doi.org/10.1016/B978-0-444-52869-8.50010-4.
  3. Miriam Backens. The ZX-calculus is complete for stabilizer quantum mechanics. NJP, 16:093021, 2014. URL: http://dx.doi.org/10.1088/1367-2630/16/9/093021.
  4. John C. Baez. Higher-dimensional algebra II. 2-Hilbert spaces. Advances in Mathematics, 127(2):125-189, 1997. URL: http://dx.doi.org/10.1006/aima.1997.1617.
  5. Teodor Banica, Julien Bichon, and Benoît Collins. Quantum permutation groups: a survey. In Noncommutative Harmonic Analysis with Applications to Probability. Polish Academy of Sciences, 2007. URL: http://dx.doi.org/10.4064/bc78-0-1.
  6. Teodor Banica, Julien Bichon, and Jean-Marc Schlenker. Representations of quantum permutation algebras. Journal of Functional Analysis, 257(9):2864-2910, 2009. URL: http://dx.doi.org/10.1016/j.jfa.2009.04.013.
  7. Teodor Banica and Remus Nicoară. Quantum groups and Hadamard matrices. Panamerican Mathematical Journal, 17:1-24, 2007. URL: http://arxiv.org/abs/math/0610529.
  8. John W. Barrett, Catherine Meusburger, and Gregor Schaumann. Gray categories with duals and their diagrams. to appear, 2012. URL: http://arxiv.org/abs/1211.0529.
  9. Bruce Bartlett. Quasistrict symmetric monoidal 2-categories via wire diagrams, 2014. URL: http://arxiv.org/abs/1409.2148.
  10. Tristan Benoist and Ion Nechita. On bipartite unitary matrices generating subalgebra-preserving quantum operations. Linear Algebra and its Applications, 521:70-103, 2017. URL: http://dx.doi.org/10.1016/j.laa.2017.01.020.
  11. Bob Coecke. Kindergarten quantum mechanics: Lecture notes. In AIP Conference Proceedings. AIP Publishing, 2006. URL: http://dx.doi.org/10.1063/1.2158713.
  12. Bob Coecke and Ross Duncan. Interacting quantum observables. In Automata, Languages and Programming, volume 5126, pages 298-310. Springer, 2008. URL: http://dx.doi.org/10.1007/978-3-540-70583-3_25.
  13. Bob Coecke, Chris Heunen, and Aleks Kissinger. Categories of quantum and classical channels. Quant. Inf. Proc., 2014. URL: http://dx.doi.org/10.1007/s11128-014-0837-4.
  14. Bob Coecke and Aleks Kissinger. Picturing Quantum Processes. Cambridge University Press, 2017. Google Scholar
  15. Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description of orthogonal bases. Mathematical Structures in Computer Science, 23(03):555-567, 2012. URL: http://dx.doi.org/10.1017/s0960129512000047.
  16. Robert Dawson and Robert Paré. Characterizing tileorders. Order, 10(2):111-128, 1993. URL: http://dx.doi.org/10.1007/bf01111295.
  17. Petre Diţă. Some results on the parametrization of complex Hadamard matrices. Journal of Physics A, 37(20):5355-5374, 2004. URL: http://dx.doi.org/10.1088/0305-4470/37/20/008.
  18. Thomas Durt, Berthold-Georg Englert, Ingemar Bengtsson, and Karol Życzkowski. On mutually unbiased bases. International Journal of Quantum Information, 08(04):535-640, 2010. URL: http://dx.doi.org/10.1142/s0219749910006502.
  19. Josep Elgueta. A strict totally coordinatized version of Kapranov and Voevodskyquotesingles 2-category 2Vect. Mathematical Proceedings of the Cambridge Philosophical Society, 142(03):407, 2007. URL: http://dx.doi.org/10.1017/s0305004106009881.
  20. Uffe Haagerup. Orthogonal maximal abelian *-subalgebras of the n×n matrices and cyclic n-roots. Institut for Matematik, 29:296-322, 1996. Google Scholar
  21. Rie Hosoya and Hiroshi Suzuki. Type II matrices and their Bose-Mesner algebras. Journal of Algebraic Combinatorics, 17:19-37, 2003. URL: http://dx.doi.org/10.1023/a:1021960623533.
  22. Benjamin Hummon. Surface diagrams for Gray categories. PhD thesis, UC San Diego, 2012. URL: http://escholarship.org/uc/item/5b24s9cc.
  23. Vaughan F. R. Jones. Planar algebras, I, 1999. URL: http://arxiv.org/abs/math/9909027.
  24. Vaughan F. R. Jones, Scott Morrison, and Noah Snyder. The classification of subfactors of index at most 5. Bull. Amer. Math. Soc., 51(2):277-327, 2013. URL: http://dx.doi.org/10.1090/s0273-0979-2013-01442-3.
  25. Vaughan F.R. Jones. On knot invariants related to some statistical mechanical models. Pacific Journal of Mathematics, 137:311-334, 1989. URL: http://dx.doi.org/10.2140/pjm.1989.137.311.
  26. Vaughan F.R. Jones and Vaikalathur S. Sunder. Introduction to Subfactors. Cambridge University Press (CUP), 1997. URL: http://dx.doi.org/10.1017/cbo9780511566219.
  27. André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Mathematics, 88(1):55-112, 1991. URL: http://dx.doi.org/10.1016/0001-8708(91)90003-p.
  28. Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for diagrammatic reasoning. In Automated Deduction - CADE-25, pages 326-336. Springer International Publishing, 2015. URL: http://dx.doi.org/10.1007/978-3-319-21401-6_22.
  29. Andreas Klappenecker and Martin Rötteler. Unitary error bases: Constructions, equivalence, and applications. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 139-149. Springer, 2003. URL: http://dx.doi.org/10.1007/3-540-44828-4_16.
  30. Emanuel Knill. Group representations, error bases and quantum codes. Los Alamos NLR LAUR-96-2807, 1996. URL: http://dx.doi.org/10.2172/378680.
  31. Emanuel Knill. Non-binary unitary error bases and quantum codes. Los Alamos National Laboratory Report LAUR-96-2717, 1996. URL: http://dx.doi.org/10.2172/373768.
  32. Máté Matolcsi, Júlia Réffy, and Ferenc Szöllősi. Constructions of complex Hadamard matrices via tiling abelian groups. Open Systems &Information Dynamics, 14(03):247-263, 2007. URL: http://dx.doi.org/10.1007/s11080-007-9050-6.
  33. David A. Meyer and Thomas G. Wong. Connectivity is a poor indicator of fast quantum search. Physical Review Letters, 114(11), 2015. URL: http://dx.doi.org/10.1103/physrevlett.114.110503.
  34. Scott Morrison and Emily Peters. The little desert? Some subfactors with index in the interval (5, 3 + √ 5). International Journal of Mathematics, 25(08):1450080, 2014. URL: http://dx.doi.org/10.1142/s0129167x14500803.
  35. Benjamin Musto. Constructing mutually unbiased bases from quantum Latin squares, 2016. URL: http://arxiv.org/abs/1605.08919.
  36. Benjamin Musto and Jamie Vicary. Quantum Latin squares and unitary error bases. Quantum Information and Computation, 2016. to appear. URL: http://arxiv.org/abs/1504.02715.
  37. Remus Nicoară. A finiteness result for commuting squares of matrix algebras. Journal of Operator Theory, 55(2):295-310, 2006. URL: http://arxiv.org/abs/math/0404301.
  38. Remus Nicoară. Subfactors and Hadamard matrices. Journal of Operator Theory, 64(2):453-468, 2010. URL: http://arxiv.org/abs/0704.1128.
  39. Adrian Ocneanu. Quantized groups, string algebras, and Galois theory for algebras. In Operator Algebras and Applications, pages 119-172. CUP, 1989. URL: http://dx.doi.org/10.1017/cbo9780511662287.008.
  40. Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349:117-158, 2014. URL: http://dx.doi.org/10.1016/j.aop.2014.06.013.
  41. Roger Penrose. Applications of negative-dimensional tensors. In D.J.A. Welsh, editor, Combinatorial Mathematics and its Applications, pages 221-244. Academic Press, New York, 1971. Google Scholar
  42. Mihai Petrescu. Existence of Continuous Families of Complex Hadamard Matrices of Certain Prime Dimensions and Related Results. PhD thesis, University of California, Los Angeles, 1997. Google Scholar
  43. Sorin Popa. Orthogonal pairs of *-subalgebras in finite von Neumann algebras. Journal of Operator Theory, 9:253-268, 1983. Google Scholar
  44. David Reutter and Jamie Vicary. Biunitary constructions in quantum information, 2016. URL: http://arxiv.org/abs/1609.07775.
  45. Christopher Schommer-Pries. The classification of two-dimensional extended topological field theories. PhD thesis, Department of Mathematics, University of California, Berkeley, 2009. URL: http://arxiv.org/abs/1112.1000.
  46. Peter Selinger. Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical Computer Science, 170:139-163, 2007. URL: http://dx.doi.org/10.1016/j.entcs.2006.12.018.
  47. Peter Selinger. A survey of graphical languages for monoidal categories. In New Structures for Physics, pages 289-355. Springer, 2010. URL: http://dx.doi.org/10.1007/978-3-642-12821-9_4.
  48. Claude E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 28(4):656-715, 1949. URL: http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x.
  49. Peter W. Shor. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations of Computer Science, pages 56-65. IEEE Computer Society Press, 1996. URL: http://dx.doi.org/10.1109/sfcs.1996.548464.
  50. Ferenc Szöllősi. Construction, classification and parametrization of complex Hadamard matrices. PhD thesis, Central European University, Budapest, Hungary, 2011. URL: http://arxiv.org/abs/1110.5590.
  51. Ferenc Szöllősi. Complex Hadamard matrices of order 6: a four-parameter family. Journal of the London Mathematical Society, 85(3):616-632, 2012. URL: http://dx.doi.org/10.1112/jlms/jdr052.
  52. Wojciech Tadej and Karol Życzkowski. A concise guide to complex Hadamard matrices. Open Systems & Information Dynamics, 13(02):133-177, 2006. URL: http://dx.doi.org/10.1007/s11080-006-8220-2.
  53. Jamie Vicary. Higher quantum theory, 2012. URL: https://arxiv.org/abs/1207.4563.
  54. Jamie Vicary. Higher semantics of quantum protocols. In Proceedings of LICS, 2012. URL: http://dx.doi.org/10.1109/lics.2012.70.
  55. Reinhard F. Werner. All teleportation and dense coding schemes. Journal of Physics A, 34(35):7081-7094, 2001. URL: http://dx.doi.org/10.1088/0305-4470/34/35/332.
  56. Pawel Wocjan and Thomas Beth. New construction of mutually unbiased bases in square dimension, 2004. URL: http://arxiv.org/abs/quant-ph/0407081.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail