Correlation Bounds Against Monotone NC^1

Author Benjamin Rossman

Thumbnail PDF


  • Filesize: 0.55 MB
  • 20 pages

Document Identifiers

Author Details

Benjamin Rossman

Cite AsGet BibTex

Benjamin Rossman. Correlation Bounds Against Monotone NC^1. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 392-411, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


This paper gives the first correlation bounds under product distributions, including the uniform distribution, against the class mNC^ of polynomial-size O(log(n))-depth monotone circuits. Our main theorem, proved using the pathset complexity framework introduced in [Rossmann,arXiv:1312.0355], shows that the average-case k-CYCLE problem (on Erdös-Renyi random graphs with an appropriate edge density) is 1/2 + 1/poly(n) hard for mNC^1. Combining this result with O'Donnell's hardness amplification theorem [O'Donnell,2002], we obtain an explicit monotone function of n variables (in the class mSAC^1) which is 1/2 + n^(-1/2+epsilon) hard for mNC^1 under the uniform distribution for any desired constant epsilon > 0. This bound is nearly best possible, since every monotone function has agreement 1/2 + Omega(log(n)/sqrt(n)) with some function in mNC^1 [O'Donnell/Wimmer,FOCS'09]. Our correlation bounds against mNC^1 extend smoothly to non-monotone NC^1 circuits with a bounded number of negation gates. Using Holley's monotone coupling theorem [Holley,Comm. Math. Physics,1974], we prove the following lemma: with respect to any product distribution, if a balanced monotone function f is 1/2 + delta hard for monotone circuits of a given size and depth, then f is 1/2 + (2^(t+1)-1)*delta hard for (non-monotone) circuits of the same size and depth with at most t negation gates. We thus achieve a lower bound against NC^1 circuits with (1/2-epsilon)*log(n) negation gates, improving the previous record of 1/6*log(log(n)) [Amano/Maruoka,SIAML J. Comp.,2005]. Our bound on negations is "half" optimal, since \lceil log(n+1) \rceil negation gates are known to be fully powerful for NC^1 [Ajtai/Komlos/Szemeredi,STOC'83; Fischer,GI'75].
  • circuit complexity
  • average-case complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail