In recent years there has been a flurry of activity proving lower bounds for homogeneous depth-4 arithmetic circuits, which has brought us very close to statements that are known to imply VP != VNP. It is a big question to go beyond homogeneity, and in this paper we make progress towards this by considering depth-4 circuits of low algebraic rank, which are a natural extension of homogeneous depth-4 arithmetic circuits. A depth-4 circuit is a representation of an N-variate, degree n polynomial P as P = sum_{i=1}^T Q_{i1} * Q_{i2} * ... * Q_{it} where the Q_{ij} are given by their monomial expansion. Homogeneity adds the constraint that for every i in [T], sum_{j} degree(Q_{ij}) = n. We study an extension where, for every i in [T], the algebraic rank of the set of polynomials {Q_{i1}, Q_{i2}, ... ,Q_{it}} is at most some parameter k. We call this the class of spnew circuits. Already for k=n, these circuits are a strong generalization of the class of homogeneous depth-4 circuits, where in particular t<=n (and hence k<=n). We study lower bounds and polynomial identity tests for such circuits and prove the following results. 1. Lower bounds: We give an explicit family of polynomials {P_n} of degree n in N = n^{O(1)} variables in VNP, such that any spnewn circuit computing P_n has size at least exp{(Omega(sqrt(n)*log(N)))}. This strengthens and unifies two lines of work: it generalizes the recent exponential lower bounds for homogeneous depth-4 circuits [KLSS14, KS-full] as well as the Jacobian based lower bounds of Agrawal et al. which worked for spnew circuits in the restricted setting where T * k <= n. 2. Hitting sets: Let spnewbounded be the class of spnew circuits with bottom fan-in at most d. We show that if d and k are at most poly(log(N)), then there is an explicit hitting set for spnewbounded circuits of size quasipolynomial in N and the size of the circuit. This strengthens a result of Forbes which showed such quasipolynomial sized hitting sets in the setting where d and t are at most poly(log(N)). A key technical ingredient of the proofs is a result which states that over any field of characteristic zero (or sufficiently large characteristic), upto a translation, every polynomial in a set of algebraically dependent polynomials can be written as a function of the polynomials in the transcendence basis. We believe this may be of independent interest. We combine this with shifted partial derivative based methods to obtain our final results.
@InProceedings{kumar_et_al:LIPIcs.CCC.2016.34, author = {Kumar, Mrinal and Saraf, Shubhangi}, title = {{Arithmetic Circuits with Locally Low Algebraic Rank}}, booktitle = {31st Conference on Computational Complexity (CCC 2016)}, pages = {34:1--34:27}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-008-8}, ISSN = {1868-8969}, year = {2016}, volume = {50}, editor = {Raz, Ran}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.34}, URN = {urn:nbn:de:0030-drops-58288}, doi = {10.4230/LIPIcs.CCC.2016.34}, annote = {Keywords: algebraic independence, arithmetic circuits, lower bounds} }
Feedback for Dagstuhl Publishing