Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-Grained Perspective into Boolean Constraint Satisfaction

Authors Marvin Künnemann, Dániel Marx



PDF
Thumbnail PDF

File

LIPIcs.CCC.2020.27.pdf
  • Filesize: 0.75 MB
  • 28 pages

Document Identifiers

Author Details

Marvin Künnemann
  • Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
Dániel Marx
  • Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Cite AsGet BibTex

Marvin Künnemann and Dániel Marx. Finding Small Satisfying Assignments Faster Than Brute Force: A Fine-Grained Perspective into Boolean Constraint Satisfaction. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 27:1-27:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.CCC.2020.27

Abstract

To study the question under which circumstances small solutions can be found faster than by exhaustive search (and by how much), we study the fine-grained complexity of Boolean constraint satisfaction with size constraint exactly k. More precisely, we aim to determine, for any finite constraint family, the optimal running time f(k)n^g(k) required to find satisfying assignments that set precisely k of the n variables to 1. Under central hardness assumptions on detecting cliques in graphs and 3-uniform hypergraphs, we give an almost tight characterization of g(k) into four regimes: 1) Brute force is essentially best-possible, i.e., g(k) = (1 ± o(1))k, 2) the best algorithms are as fast as current k-clique algorithms, i.e., g(k) = (ω/3 ± o(1))k, 3) the exponent has sublinear dependence on k with g(k) ∈ [Ω(∛k), O(√k)], or 4) the problem is fixed-parameter tractable, i.e., g(k) = O(1). This yields a more fine-grained perspective than a previous FPT/W[1]-hardness dichotomy (Marx, Computational Complexity 2005). Our most interesting technical contribution is a f(k)n^(4√k)-time algorithm for SubsetSum with precedence constraints parameterized by the target k - particularly the approach, based on generalizing a bound on the Frobenius coin problem to a setting with precedence constraints, might be of independent interest.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Fine-grained complexity theory
  • algorithmic classification theorem
  • multivariate algorithms and complexity
  • constraint satisfaction problems
  • satisfiability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-grained complexity of analyzing compressed data: Quantifying improvements over Decompress-and-Solve. In Proc. 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), pages 192-203, 2017. URL: https://doi.org/10.1109/FOCS.2017.26.
  2. Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique algorithms are optimal, so is valiant’s parser. SIAM J. Comput., 47(6):2527-2555, 2018. URL: https://doi.org/10.1137/16M1061771.
  3. Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences of falsifying SETH and the Orthogonal Vectors conjecture. In Proc. 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pages 253-266, New York, NY, USA, 2018. ACM. URL: https://doi.org/10.1145/3188745.3188938.
  4. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844-856, 1995. URL: https://doi.org/10.1145/210332.210337.
  5. Enric Boix-Adserà, Matthew Brennan, and Guy Bresler. The average-case complexity of counting cliques in Erdős-Rényi hypergraphs. In Proc. 60th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2019), pages 1256-1280, 2019. URL: https://doi.org/10.1109/FOCS.2019.00078.
  6. Édouard Bonnet, László Egri, and Dániel Marx. Fixed-Parameter Approximability of Boolean MinCSPs. In Piotr Sankowski and Christos Zaroliagis, editors, Proc. 24th Annual European Symposium on Algorithms (ESA 2016), volume 57 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1-18:18, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.18.
  7. Alfred Brauer. On a problem of partitions. American Journal of Mathematics, 64(1):299-312, 1942. Google Scholar
  8. Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 1073-1084, 2017. URL: https://doi.org/10.1137/1.9781611974782.69.
  9. Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of Schaefer’s theorem in P: dichotomy of ∃^k∀-quantified first-order graph properties. In Proc. 34th Computational Complexity Conference (CCC 2019), pages 31:1-31:27, 2019. URL: https://doi.org/10.4230/LIPIcs.CCC.2019.31.
  10. Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular expression membership testing. In Chris Umans, editor, Proc. 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), pages 307-318. IEEE Computer Society, 2017. URL: https://doi.org/10.1109/FOCS.2017.36.
  11. Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), pages 319-330, 2017. URL: https://doi.org/10.1109/FOCS.2017.37.
  12. Andrei A. Bulatov and Dániel Marx. Constraint satisfaction parameterized by solution size. SIAM J. Comput., 43(2):573-616, 2014. URL: https://doi.org/10.1137/120882160.
  13. Nofar Carmeli and Markus Kröll. On the enumeration complexity of unions of conjunctive queries. In Dan Suciu, Sebastian Skritek, and Christoph Koch, editors, Proc. 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2019), pages 134-148. ACM, 2019. URL: https://doi.org/10.1145/3294052.3319700.
  14. Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput., 201(2):216-231, 2005. URL: https://doi.org/10.1016/j.ic.2005.05.001.
  15. Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346-1367, 2006. URL: https://doi.org/10.1016/j.jcss.2006.04.007.
  16. Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40-42):3736-3756, 2010. URL: https://doi.org/10.1016/j.tcs.2010.06.026.
  17. Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability problems. J. Comput. Syst. Sci., 51(3):511-522, 1995. URL: https://doi.org/10.1006/jcss.1995.1087.
  18. Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of boolean constraint satisfaction problems. SIAM, 2001. URL: https://doi.org/10.1137/1.9780898718546.
  19. Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and dominating set. Theor. Comput. Sci., 326(1-3):57-67, 2004. URL: https://doi.org/10.1016/j.tcs.2004.05.009.
  20. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput., 28(1):57-104, 1998. URL: https://doi.org/10.1137/S0097539794266766.
  21. Jean Gallier. The Frobenius coin problem. Upper bounds on the Frobenius number, 2014. Google Scholar
  22. Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approximability of constraint satisfaction problems. SIAM J. Comput., 30(6):1863-1920, 2000. URL: https://doi.org/10.1137/S0097539799349948.
  23. Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum. ACM Trans. Algorithms, 15(3):40:1-40:20, 2019. URL: https://doi.org/10.1145/3329863.
  24. Stefan Kratsch, Dániel Marx, and Magnus Wahlström. Parameterized complexity and kernelizability of max ones and exact ones problems. TOCT, 8(1):1:1-1:28, 2016. URL: https://doi.org/10.1145/2858787.
  25. Andrei A. Krokhin and Dániel Marx. On the hardness of losing weight. ACM Trans. Algorithms, 8(2):19:1-19:18, 2012. URL: https://doi.org/10.1145/2151171.2151182.
  26. Bingkai Lin. The parameterized complexity of the k-biclique problem. J. ACM, 65(5):34:1-34:23, 2018. URL: https://doi.org/10.1145/3212622.
  27. Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest cycles and paths in sparse graphs. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pages 1236-1252, Philadelphia, PA, USA, 2018. Society for Industrial and Applied Mathematics. Google Scholar
  28. Dániel Marx. Parameterized complexity of constraint satisfaction problems. Computational Complexity, 14(2):153-183, 2005. URL: https://doi.org/10.1007/s00037-005-0195-9.
  29. Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae, 026(2):415-419, 1985. Google Scholar
  30. Jorge L. Ramirez Alfonsin. The diophantine Frobenius problem. Oxford University Press, Oxford, 2005. Google Scholar
  31. Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium on Theory of Computing (STOC 1978), pages 216-226, 1978. URL: https://doi.org/10.1145/800133.804350.
  32. Jeanette P. Schmidt and Alan Siegel. The spatial complexity of oblivious k-probe hash functions. SIAM J. Comput., 19(5):775-786, 1990. URL: https://doi.org/10.1137/0219054.
  33. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146-160, 1972. URL: https://doi.org/10.1137/0201010.
  34. Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Proc. 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), pages 331-342, 2017. URL: https://doi.org/10.1109/FOCS.2017.38.
  35. Dmitriy Zhuk and Barnaby Martin. QCSP monsters and the demise of the Chen conjecture. CoRR, abs/1907.00239, 2019. URL: http://arxiv.org/abs/1907.00239.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail