LIPIcs.CONCUR.2018.36.pdf
- Filesize: 0.5 MB
- 16 pages
Generalized Probabilistic Logic (GPL) is a temporal logic, based on the modal mu-calculus, for specifying properties of branching probabilistic systems. We consider GPL over branching systems that also exhibit internal non-determinism under linear-time semantics (which is resolved by schedulers), and focus on the problem of finding the capacity (supremum probability over all schedulers) of a fuzzy formula. Model checking GPL is undecidable, in general, over such systems, and existing GPL model checking algorithms are limited to systems without internal non-determinism, or to checking non-recursive formulae. We define a subclass, called separable GPL, which includes recursive formulae and for which model checking is decidable. A large class of interesting and decidable problems, such as termination of 1-exit Recursive MDPs, reachability of Branching MDPs, and LTL model checking of MDPs, whose decidability has been studied independently, can be reduced to model checking separable GPL. Thus, GPL is widely applicable and, with a suitable extension of its semantics, yields a uniform framework for studying problems involving systems with non-deterministic and probabilistic behaviors.
Feedback for Dagstuhl Publishing