A Qualitative Spatial Descriptor of Group-Robot Interactions

Authors Zoe Falomir, Cecilio Angulo

Thumbnail PDF


  • Filesize: 2.17 MB
  • 14 pages

Document Identifiers

Author Details

Zoe Falomir
Cecilio Angulo

Cite AsGet BibTex

Zoe Falomir and Cecilio Angulo. A Qualitative Spatial Descriptor of Group-Robot Interactions. In 13th International Conference on Spatial Information Theory (COSIT 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 86, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


The problem of finding a suitable qualitative representation for robots to reason about activity spaces where they carry out tasks such as leading or interacting with a group of people is tackled in this paper. For that, a Qualitative Spatial model for Group Robot Interaction (QS-GRI) is proposed to define Kendon’s F-formations [Kendon, 2010] depending on: (i) the relative location of the robot with respect to other individuals involved in that interaction; (ii) the individuals’ orientation; (iii) the shared peri-personal distance; and (iv) the role of the individuals (observer, main character or interactive). An iconic representation is provided and Kendon’s formations are defined logically. The conceptual neighborhood of the evolution of Kendon formations is studied, that is, how one formation is transformed into another. These transformations can depend on the role that the robot have, and on the amount of people involved.
  • qualitative modeling
  • spatial reasoning
  • location
  • distance
  • orientation
  • cognitive robotics
  • human-robot interaction
  • group-robot interaction
  • logics


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. P. Althaus, H. Ishiguro, T. Kanda, T. Miyashita, and H. I. Christensen. Navigation for human-robot interaction tasks. In Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE Int. Conf. on, volume 2, pages 1894-1900 Vol.2, April 2004. URL: http://dx.doi.org/10.1109/ROBOT.2004.1308100.
  2. N. Bellotto, M. Hanheide, and N. Van de Weghe. Qualitative design and implementation of human-robot spatial interactions. In G. Herrmann et al., editor, Social Robotics, volume 8239 of LNCS, pages 331-340. Springer International Publishing, 2013. Google Scholar
  3. R. J. Bufacchi, M. Liang, L. D. Griffin, and G. D. Iannetti. A geometric model of defensive peripersonal space. Journal of Neurophysiology, 115:218-225, 2016. URL: http://dx.doi.org/10.1152/jn.00691.2015.
  4. W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial Intelligence, 114(1):3-55, 1999. URL: http://dx.doi.org/10.1016/S0004-3702(99)00070-3.
  5. P. Bustos, L. J. Manso, J. P. Bandera Rubio, A. Romero-Garcés, L. V. Calderita, R. Marfil, and A. Bandera. A unified internal representation of the outer world for social robotics. In L. P. Reis et al., editor, Robot 2015: Second Iberian Robotics Conference - Advances in Robotics, Lisbon, Portugal, volume 418 of Advances in Intelligent Systems and Computing, pages 733-744. Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-319-27149-1_57.
  6. A. Couyoumdjian, F. Di Nocera, and F. Ferlazzo. Functional representation of 3D space in endogenous attention shifts. The Quarterly Journal of Experimental Psychology Section A, 56(1):155-183, 2003. URL: http://dx.doi.org/10.1080/02724980244000215.
  7. M. Díaz-Boladeras, D. Paillacho, C. Angulo, O. Torres, J. Gonzalez, and J. Albo-Canals. Evaluating group-robot interaction in crowded public spaces: A week-long exploratory study in the wild with a humanoid robot guiding visitors through a science museum. Int. Journal of Humanoid Robotics, 12(04):1550022, 2015. URL: http://dx.doi.org/10.1142/S021984361550022X.
  8. C. Dondrup, N. Bellotto, and M. Hanheide. A probabilistic model of human-robot spatial interaction using a qualitative trajectory calculus. In AAAI Spring Symposium, 2014. Google Scholar
  9. C. Dondrup, N. Bellotto, and M. Hanheide. Social distance augmented qualitative trajectory calculus for human-robot spatial interaction. In Robot and Human Interactive Communication, 2014 RO-MAN: The 23rd IEEE International Symposium on, pages 519-524, Aug 2014. URL: http://dx.doi.org/10.1109/ROMAN.2014.6926305.
  10. F. Dylla, M. Coors, and M. Bhatt. Socially compliant navigation in crowded environments. In Spatial and Temporal Dynamics (STeDy) Workshop at ECAI 2012, pages 9-17, 2012. Google Scholar
  11. F. Dylla, A. Kreutzmann, and D. Wolter. A qualitative representation of social conventions for application in robotics. In 2014 AAAI Spring Symposium - Qualitative Representations for Robots, number SS-14-06 in Papers from the 2014 AAAI Spring Symposium, 2014. Google Scholar
  12. C. Goerick. Towards cognitive robotics. In B. et al. Sendhoff, editor, Creating Brain-Like Intelligence: From Basic Principles to Complex Intelligent Systems, pages 192-214. Springer, Berlin, Heidelberg, 2009. URL: http://dx.doi.org/10.1007/978-3-642-00616-6_10.
  13. E. Hall. The hidden dimension: Man’s Use of Space in Public and Private. The Bodley Head Ltd, London, UK, 1966. Google Scholar
  14. M. Hanheide, A. Peters, and N. Bellotto. Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus. In RO-MAN, 2012 IEEE, pages 689-694, 2012. Google Scholar
  15. H. Huettenrauch, K. S. Eklundh, A. Green, and A. T. Elin. Investigating spatial relationships in human-robot interaction. In Int. Conf. on Intelligent Robots and Systems, pages 5052-5059, 2006. Google Scholar
  16. A. Kendon. Spacing and orientation in co-present interaction. In A. Esposito, N. Campbell, C. Vogel, A. Hussain, and A. Nijholt, editors, Development of Multimodal Interfaces: Active Listening and Synchrony, volume 5967 of LNCS, pages 1-15. Springer, Berlin, 2010. Google Scholar
  17. A. Kristoffersson, K. Severinson-Eklundh, and A. Loutfi. Measuring the quality of interaction in mobile robotic telepresence: A pilots perspective. Int. Journal of Social Robotics, pages 1-13, 2012. Google Scholar
  18. I. Leite, M. McCoy, D. Ullman, N. Salomons, and B. Scassellati. Comparing models of disengagement in individual and group interactions. In Proc. of 10th Annual ACM/IEEE Int. Conf. on Human-Robot Interaction, HRI'15, pages 99-105, New York, NY, USA, 2015. ACM. URL: http://dx.doi.org/10.1145/2696454.2696466.
  19. J. W. Lloyd. Foundations of logic programming. Symbolic computation: Artificial intelligence. Springer-Verlag, 2nd, extended edition edition, 1987. Google Scholar
  20. P. Marshall, Y. Rogers, and N. Pantidi. Using F-formations to analyse spatial patterns of interaction in physical environments. In Proc. of the ACM 2011 Conf. on Computer Supported Cooperative Work, CSCW'11, pages 445-454, New York, NY, USA, 2011. ACM. URL: http://dx.doi.org/10.1145/1958824.1958893.
  21. R. Moratz and J. O. Wallgrün. Spatial reasoning with augmented points: Extending cardinal directions with local distances. J. Spatial Information Science, 5(1):1-30, 2012. URL: http://dx.doi.org/10.5311/JOSIS.2012.5.84.
  22. E. Pacchierotti, H. I. Christensen, and P. Jensfelt. Embodied social interaction for service robots in hallway environments. In Proc. of the International Conference on Field and Service Robotics (FSR'05), July 2005. Google Scholar
  23. L. Sterling and E. Shapiro. The Art of Prolog (2nd Ed.): Advanced Programming Techniques. MIT Press, Cambridge, MA, USA, 1994. Google Scholar
  24. T. Tenbrink, K. Fischer, and R. Moratz. Spatial strategies in linguistic human-robot communication. In Christian Freksa, editor, KI-Themenheft 4/02 Spatial Cognition, pages 19-23. arenDTaP Verlag, 2002. Google Scholar
  25. S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Hähnel, C. R. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: A second-generation museum tour-guide robot. In 1999 IEEE Int. Conf. on Robotics and Automation, Proc., pages 1999-2005, 1999. URL: http://dx.doi.org/10.1109/ROBOT.1999.770401.