Towards a Quantum Theory of Geographic Fields

Author Thomas Bittner

Thumbnail PDF


  • Filesize: 1.06 MB
  • 14 pages

Document Identifiers

Author Details

Thomas Bittner

Cite AsGet BibTex

Thomas Bittner. Towards a Quantum Theory of Geographic Fields. In 13th International Conference on Spatial Information Theory (COSIT 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 86, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


This paper proposes a framework that that allows for the possibility that multiple classically incompatible states are expressed simultaneously at a given point of a geographic field. The admission of such superposition states provides the basis for a new understanding of indeterminacy and ontological vagueness in the geographic world.
  • Vagueness
  • Quantum Geography
  • Ontology
  • Ecoregion classification


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. R. G. Bailey. Delineation of ecosystem regions. Environmental Management, 7:365-373, 1983. Google Scholar
  2. J. Berg. Aristotle’s Theory of Definition. In ATTI del Convegno Internazionale di Storia della Logica, pages 19-30. San Gimignano, 1983. Google Scholar
  3. CEC. Ecological Regions of North America. Technical report, Commission for Environmental Cooperation,, 1997.
  4. CEC. Ecoregions of the United States., September 2009.
  5. John E. Chappell. Geography and quantum physics. The Professional Geographer, 47(2):220-221, 1995. Google Scholar
  6. P. Dirac. Principles of Quantum Mechanics. Oxford : Clarendon Press, 1930. Google Scholar
  7. EPA. Primary Distinguishing Characteristics of Level III Ecoregions. Technical report, Environmental Protection Agency,, 2002.
  8. David J. Griffiths. Introduction to Quantum Mechanics. Addison Wesley, 2004. Google Scholar
  9. Jan Hilgevoord and Jos Uffink. The Uncertainty Principle. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Summer 2012 edition, 2012. Google Scholar
  10. B. Z. Iliev. Fibre bundle formulation of nonrelativistic quantum mechanics (full version). eprint arXiv:quant-ph/0004041, April 2000. URL:
  11. Barry Kronenfeld. Gradation as a Communication Device in Area-Class Maps. Cartography and Geographic Information Science, 32(4):231-241, 2005. Google Scholar
  12. R. Omnès. The Interpretation of Quantum Mechanics. Princeton: Princeton University Press, 1994. Google Scholar
  13. William Peterman. Quantum theory and geography: What can Dr. Bertlmann teach us? Professional Geographer, 46(1):9, 1994. Google Scholar
  14. David H. Sanford. Determinates vs. Determinables. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring 2011 edition, 2011. Google Scholar
  15. R. N. Sen and G. L. Sewell. Fiber bundles in quantum physics. Journal of Mathematical Physics, 43:1323-1339, March 2002. URL: