Pseudo-Boolean Optimization by Implicit Hitting Sets

Authors Pavel Smirnov, Jeremias Berg , Matti Järvisalo



PDF
Thumbnail PDF

File

LIPIcs.CP.2021.51.pdf
  • Filesize: 1.08 MB
  • 20 pages

Document Identifiers

Author Details

Pavel Smirnov
  • HIIT, Department of Computer Science, University of Helsinki, Finland
Jeremias Berg
  • HIIT, Department of Computer Science, University of Helsinki, Finland
Matti Järvisalo
  • HIIT, Department of Computer Science, University of Helsinki, Finland

Acknowledgements

The authors thank Paul Saikko for his initial implementation work on PBO-IHS.

Cite AsGet BibTex

Pavel Smirnov, Jeremias Berg, and Matti Järvisalo. Pseudo-Boolean Optimization by Implicit Hitting Sets. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 51:1-51:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.CP.2021.51

Abstract

Recent developments in applying and extending Boolean satisfiability (SAT) based techniques have resulted in new types of approaches to pseudo-Boolean optimization (PBO), complementary to the more classical integer programming techniques. In this paper, we develop the first approach to pseudo-Boolean optimization based on instantiating the so-called implicit hitting set (IHS) approach, motivated by the success of IHS implementations for maximum satisfiability (MaxSAT). In particular, we harness recent advances in native reasoning techniques for pseudo-Boolean constraints, which enable efficiently identifying inconsistent assignments over subsets of objective function variables (i.e. unsatisfiable cores in the context of PBO), as a basis for developing a native IHS approach to PBO, and study the impact of various search techniques applicable in the context of IHS for PBO. Through an extensive empirical evaluation, we show that the IHS approach to PBO can outperform other currently available PBO solvers, and also provides a complementary approach to PBO when compared to classical integer programming techniques.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial optimization
  • Theory of computation → Constraint and logic programming
Keywords
  • constraint optimization
  • pseudo-Boolean optimization
  • implicit hitting sets

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-based optimization in CLASP. In Agostino Dovier and Vítor Santos Costa, editors, Technical Communications of the 28th International Conference on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary, volume 17 of LIPIcs, pages 211-221. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. URL: https://doi.org/10.4230/LIPIcs.ICLP.2012.211.
  2. Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in MaxSAT. In Christopher Beck, editor, Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 641-651. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-66158-2_41.
  3. Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 24, pages 929-991. IOS Press BV, 2021. URL: https://doi.org/10.3233/FAIA201008.
  4. Omid Sanei Bajgiran, André A. Ciré, and Louis-Martin Rousseau. A first look at picking dual variables for maximizing reduced cost fixing. In Domenico Salvagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Constraint Programming - 14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings, volume 10335 of Lecture Notes in Computer Science, pages 221-228. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-59776-8_18.
  5. Peter Barth. Linear 0-1 inequalities and extended clauses. In Andrei Voronkov, editor, Logic Programming and Automated Reasoning,4th International Conference, LPAR'93, St. Petersburg, Russia, July 13-20, 1993, Proceedings, volume 698 of Lecture Notes in Computer Science, pages 40-51. Springer, 1993. URL: https://doi.org/10.1007/3-540-56944-8_40.
  6. Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set MaxSat solving. In Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277-294. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-51825-7_20.
  7. Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in SAT-based MaxSAT solving. In J. Christopher Beck, editor, Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 652-670. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-66158-2_42.
  8. Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation, 7(2-3):59-6, 2010. URL: https://doi.org/10.3233/sat190075.
  9. Sam Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere, Marijn Heule, Hans Van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 133-182. IOS Press BV, 2021. URL: https://doi.org/10.3233/FAIA200990.
  10. Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver. In Proceedings of the 40th Design Automation Conference, DAC 2003, Anaheim, CA, USA, June 2-6, 2003, pages 830-835. ACM, 2003. URL: https://doi.org/10.1145/775832.776041.
  11. Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. A modular approach to MaxSAT modulo theories. In Matti Järvisalo and Allen Van Gelder, editors, Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture Notes in Computer Science, pages 150-165. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-39071-5_12.
  12. William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25-38, 1987. URL: https://doi.org/10.1016/0166-218X(87)90039-4.
  13. IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation, 46(53):157, 2009. Google Scholar
  14. Harlan P. Crowder, Ellis L. Johnson, and Manfred W. Padberg. Solving large-scale zero-one linear programming problems. Operational Research, 31(5):803-834, 1983. URL: https://doi.org/10.1287/opre.31.5.803.
  15. George B. Dantzig, D. Ray Fulkerson, and Selmer M. Johnson. Solution of a large-scale traveling-salesman problem. Operational Research, 2(4):393-410, 1954. URL: https://doi.org/10.1287/opre.2.4.393.
  16. Jessica Davies. Solving MaxSAT by decoupling optimization and satisfaction. PhD thesis, University of Toronto, 2013. Google Scholar
  17. Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT instances. In Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming - CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225-239. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-23786-7_19.
  18. Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving. In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 247-262. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40627-0_21.
  19. Erin Delisle and Fahiem Bacchus. Solving weighted CSPs by successive relaxations. In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages 273-281. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40627-0_23.
  20. Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer linear programming with pseudo-Boolean conflict-driven search. Constraints, 2021. URL: https://doi.org/10.1007/s10601-020-09318-x.
  21. Jo Devriendt, Stephan Gocht, Emir Demirovic, Jakob Nordström, and Peter J. Stuckey. Cutting to the core of pseudo-boolean optimization: Combining core-guided search with cutting planes reasoning. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 3750-3758. AAAI Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/16492.
  22. Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages 502-518. Springer, 2003. URL: https://doi.org/10.1007/978-3-540-24605-3_37.
  23. Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer Science, 89(4):543-560, 2003. URL: https://doi.org/10.1016/S1571-0661(05)82542-3.
  24. Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1291-1299. ijcai.org, 2018. URL: https://doi.org/10.24963/ijcai.2018/180.
  25. Katalin Fazekas, Fahiem Bacchus, and Armin Biere. Implicit hitting set algorithms for maximum satisfiability modulo theories. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture Notes in Computer Science, pages 134-151. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-94205-6_10.
  26. Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano. MIPLIB 2017: Data-driven compilation of the 6th mixed-integer programming library. Mathematical Programming Computation, 2021. URL: https://doi.org/10.1007/s12532-020-00194-3.
  27. Antti Hyttinen, Paul Saikko, and Matti Järvisalo. A core-guided approach to learning optimal causal graphs. In Carles Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 645-651. ijcai.org, 2017. URL: https://doi.org/10.24963/ijcai.2017/90.
  28. Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and João Marques-Silva. Smallest MUS extraction with minimal hitting set dualization. In Gilles Pesant, editor, Principles and Practice of Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages 173-182. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-23219-5_13.
  29. Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for pseudo-Boolean constraints. In Gilles Pesant, editor, Principles and Practice of Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages 200-209. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-23219-5_15.
  30. Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 438-445. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-09284-3_33.
  31. António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT with soft cardinality constraints. In Barry O'Sullivan, editor, Principles and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564-573. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-10428-7_41.
  32. George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. Wiley Interscience Series in Discrete Mathematics and Optimization. Wiley, 1988. URL: https://doi.org/10.1002/9781118627372.
  33. Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33(1):60-100, 1991. URL: https://doi.org/10.1137/1033004.
  34. Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. URL: https://www.sciencedirect.com/science/bookseries/15746526/2.
  35. Olivier Roussel. Pseudo-Boolean competition 2016. http://www.cril.univ-artois.fr/PB16/. Accessed: 25 April 2021.
  36. Olivier Roussel and Vasco Manquinho. Pseudo-boolean and cardinality constraints. In Armin Biere, Marijn Heule, Hans Van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, chapter 28, pages 1087-1129. IOS Press BV, 2021. URL: https://doi.org/10.3233/FAIA201012.
  37. Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid MaxSAT solver. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 539-546. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-40970-2_34.
  38. Paul Saikko, Carmine Dodaro, Mario Alviano, and Matti Järvisalo. A hybrid approach to optimization in answer set programming. In Michael Thielscher, Francesca Toni, and Frank Wolter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018, pages 32-41. AAAI Press, 2018. URL: https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021.
  39. Paul Saikko, Johannes Peter Wallner, and Matti Järvisalo. Implicit hitting set algorithms for reasoning beyond NP. In Chitta Baral, James P. Delgrande, and Frank Wolter, editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, April 25-29, 2016, pages 104-113. AAAI Press, 2016. URL: http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12812.
  40. Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in band form and related techniques for PB-solvers. IEICE Transactions on Information and Systems, 98-D(6):1121-1127, 2015. URL: https://doi.org/10.1587/transinf.2014FOP0007.
  41. Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A tool for optimization modulo theories. Journal of Automated Reasoning, 64(3):423-460, 2020. URL: https://doi.org/10.1007/s10817-018-09508-6.
  42. Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):165-189, 2006. URL: https://doi.org/10.3233/sat190020.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail