A CP Approach for the Liner Shipping Network Design Problem

Authors Yousra El Ghazi , Djamal Habet , Cyril Terrioux

Thumbnail PDF


  • Filesize: 1.18 MB
  • 21 pages

Document Identifiers

Author Details

Yousra El Ghazi
  • Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
Djamal Habet
  • Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
Cyril Terrioux
  • Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France


The authors would like to thank the anonymous reviewers for their valuable comments and suggestions.

Cite AsGet BibTex

Yousra El Ghazi, Djamal Habet, and Cyril Terrioux. A CP Approach for the Liner Shipping Network Design Problem. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


The liner shipping network design problem consists, for a shipowner, in determining, on the one hand, which maritime lines (in the form of rotations serving a set of ports) to open, and, on the other hand, the assignment of ships (container ships) with the adapted sizes for the different lines to carry all the container flows. In this paper, we propose a modeling of this problem using constraint programming. Then, we present a preliminary study of its solving using a state-of-the-art solver, namely the OR-Tools CP-SAT solver.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Artificial intelligence
  • Constraint optimization problem
  • modeling
  • solving
  • industrial application


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. R. Agarwal and Ö. Ergun. Ship Scheduling and Network Design for Cargo Routing in Liner Shipping. Transportation Science, 42(2):175-196, 2008. URL: https://doi.org/10.1287/trsc.1070.0205.
  2. J. F. Álvarez. Joint routing and deployment of a fleet of container vessels. Maritime Economics & Logistics, 11(2):186-208, 2009. URL: https://doi.org/10.1057/mel.2009.5.
  3. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. Technical Report T2012:03, TASC-SICS-LINA, 2014. Google Scholar
  4. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathematical and Computer Modelling, 20(12):97-123, 1994. Google Scholar
  5. B. D. Brouer, G. Desaulniers, C. V. Karsten, and D Pisinger. A Matheuristic for the Liner Shipping Network Design Problem with Transit Time Restrictions. In Computational Logistics - 6th International Conference, ICCL, volume 9335 of Lecture Notes in Computer Science, pages 195-208. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-24264-4_14.
  6. B. D. Brouer, C. V. Karsten, and D. Pisinger. Optimization in liner shipping. Annals of Operations Research, 271(1):205-236, 2018. URL: https://doi.org/10.1007/s10479-018-3023-8.
  7. B. D. Brouer, J. F. Álvarez, C. E. M. Plum, D. Pisinger, and M. M. Sigurd. A base integer programming model and benchmark suite for liner-shipping network design. Transportation Science, 48(2):281-312, 2014. URL: https://doi.org/10.1287/trsc.2013.0471.
  8. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver. In Programming Languages: Implementations, Logics, and Programs (PLILP), volume 1292 of Lecture Notes in Computer Science, pages 191-206, 1997. URL: https://doi.org/10.1007/BFb0033845.
  9. M. Christiansen, E. O. Hellsten, D. Pisinger, D. Sacramento, and C. Vilhelmsen. Liner shipping network design. European Journal of Operational Research, 286, 2020. URL: https://doi.org/10.1016/j.ejor.2019.09.057.
  10. R. Cymer. Dulmage-Mendelsohn Canonical Decomposition as a generic pruning technique. Constraints, 17(3):234-272, 2012. Google Scholar
  11. Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time windows. European Journal of Operational Research, 54(1):7-22, 1991. URL: https://doi.org/10.1016/0377-2217(91)90319-Q.
  12. C. V. Karsten, B. D. Brouer, G. Desaulniers, and D. Pisinger. Time constrained liner shipping network design. Transportation Research. Part E: Logistics and Transportation Review, 105:152-162, 2017. URL: https://doi.org/10.1016/j.tre.2016.03.010.
  13. C. V. Karsten, D. Pisinger, S. Røpke, and B. D. Brouer. The time constrained multi-commodity network flow problem and its application to liner shipping network design. Transportation Research Part E: Logistics and Transportation Review, 76:122-138, 2015. URL: https://doi.org/10.1016/j.tre.2015.01.005.
  14. E. Kelareva, K. Tierney, and P. Kilby. CP methods for scheduling and routing with time-dependent task costs. EURO Journal on Computational Optimization, 2(3):147-194, 2014. URL: https://doi.org/10.1007/s13675-014-0022-7.
  15. P. Kilby and P. Shaw. Vehicle routing. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence, pages 801-836. Elsevier, 2006. URL: https://doi.org/10.1016/S1574-6526(06)80027-1.
  16. D. Kizilay, P. Van Hentenryck, and D. Türsel Eliiyi. Constraint programming models for integrated container terminal operations. European Journal of Operational Research, 286(3):945-962, 2020. URL: https://doi.org/10.1016/j.ejor.2020.04.025.
  17. A. Krogsgaard, D. Pisinger, and J. Thorsen. A flow-first route-next heuristic for liner shipping network design. Networks, 72(3):358-381, 2018. URL: https://doi.org/10.1002/net.21819.
  18. Q. Meng and S. Wang. Liner shipping service network design with empty container repositioning. Transportation Research Part E: Logistics and Transportation Review, 47(5):695-708, 2011. URL: https://doi.org/10.1016/j.tre.2011.02.004.
  19. Q. Meng and S. Wang. Optimal operating strategy for a long-haul liner service route. European Journal of Operational Research, 215(1):105-114, 2011. URL: https://doi.org/10.1016/j.ejor.2011.05.057.
  20. O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via lazy clause generation. Constraints An International Journal, 14(3):357-391, 2009. URL: https://doi.org/10.1007/s10601-008-9064-x.
  21. C. E. M. Plum, D. Pisinger, J. J. Salazar-González, and M. M. Sigurd. Single liner shipping service design. Computers & Operations Research, 45:1-6, 2014. URL: https://doi.org/10.1016/j.cor.2013.11.018.
  22. C. E. M. Plum, D. Pisinger, and M. M. Sigurd. A service flow model for the liner shipping network design problem. European Journal of Operational Research, 235(2):378-386, 2014. URL: https://doi.org/10.1016/j.ejor.2013.10.057.
  23. L. B. Reinhardt and D. Pisinger. A branch and cut algorithm for the container shipping network design problem. Flexible Services and Manufacturing Journal, 24(3):349-374, 2012. URL: https://doi.org/10.1007/s10696-011-9105-4.
  24. D. Sacramento, C. Solnon, and D. Pisinger. Constraint Programming and Local Search Heuristic: a Matheuristic Approach for Routing and Scheduling Feeder Vessels in Multi-terminal Ports. Annals of Operations Research, 1(4), 2020. URL: https://doi.org/10.1007/s43069-020-00036-x.
  25. P. J. Stuckey, T. Feydy, A. Schutt, G. Tack, and J. Fischer. The MiniZinc Challenge 2008-2013. AI Magazine, 35(2):55-60, 2014. Google Scholar
  26. OR-Tools team. OR-Tools CP-SAT solver, 2023. URL: https://developers.google.com/optimization/cp/cp_solver.
  27. K. Thun, H. Andersson, and M. Christiansen. Analyzing complex service structures in liner shipping network design. Flexible Services and Manufacturing Journal, 29(3-4):535-552, 2017. URL: https://doi.org/10.1007/s10696-016-9262-6.
  28. K. Tierney. Optimizing Liner Shipping Fleet Repositioning Plans, volume 57 of Operations research / computer science interfaces series. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-17665-9.
  29. P. Van Hentenryck and J.-P. Carillon. Generality versus Specificity: An Experience with AI and OR Techniques. In Proceedings of the National Conference on Artificial Intelligence, pages 660-664, 1988. Google Scholar
  30. S. Wang and Q. Meng. Liner shipping network design with deadlines. Computers & Operations Research, 41:140-149, 2014. URL: https://doi.org/10.1016/j.cor.2013.08.014.
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail