Cumulative Scheduling with Calendars and Overtime

Authors Samuel Cloutier , Claude-Guy Quimper



PDF
Thumbnail PDF

File

LIPIcs.CP.2024.7.pdf
  • Filesize: 1.46 MB
  • 16 pages

Document Identifiers

Author Details

Samuel Cloutier
  • Université Laval, Québec, Canada
Claude-Guy Quimper
  • Université Laval, Québec, Canada

Cite AsGet BibTex

Samuel Cloutier and Claude-Guy Quimper. Cumulative Scheduling with Calendars and Overtime. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CP.2024.7

Abstract

In project scheduling, calendar considerations can increase the duration of a task when its execution overlaps with holidays. On the other hand, the use of overtime may decrease the task’s duration. We introduce the CalendarOvertime constraint which verifies that a task follows a calendar with overtime and holidays. We also introduce the CumulativeOvertime constraint, a variant of the Cumulative constraint, that also reasons with the calendars when propagating according to the resource consumption, the overtime, and the holidays. Experimental results of a RCPSP model on the PSPLIB, BL, and PACK instances augmented with calendars and overtime show that the use of the CalendarOvertime constraint offers a speedup greater than 2.9 on the instances optimally solved and finds better solutions on more than 79% of the remaining instances when compared to a decomposition of the constraint. We also show that the use of our CumulativeOvertime constraint further improves these results.

Subject Classification

ACM Subject Classification
  • Computing methodologies → Planning and scheduling
  • Theory of computation → Constraint and logic programming
Keywords
  • Constraint programming
  • Scheduling
  • Global constraints
  • Calendars
  • Overtime
  • Cumulative constraint
  • Time-Tabling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex scheduling and placement problems. Mathematical and Computer Modelling, 17(7):57-73, 1993. URL: https://doi.org/10.1016/0895-7177(93)90068-A.
  2. Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Springer, 2001. Google Scholar
  3. Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques for highly disjunctive and highly cumulative project scheduling problems. Constraints, 5(1):119-139, 2000. URL: https://doi.org/10.1023/A:1009822502231.
  4. Nicolas Beldiceanu. Global constraints as graph properties on structured network of elementary constraints of the same type. SICS Technical report T2000-01, 2000. Google Scholar
  5. Global constraint catalog: Calendar. https://sofdem.github.io/gccat/gccat/Ccalendar.html#uid15664. Accessed: 2024-04-04.
  6. Raphaël Boudreault, Vanessa Simard, Daniel Lafond, and Claude-Guy Quimper. A constraint programming approach to ship refit project scheduling. In Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming (CP 2022), volume 235, pages 10:1-10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CP.2022.10.
  7. Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained project scheduling problem. European Journal of Operational Research, 149(2):314-324, 2003. URL: https://doi.org/10.1016/S0377-2217(02)00763-4.
  8. Geoffrey Chu. Improving Combinatorial Optimization. PhD thesis, The University of Melbourne, 2011. Google Scholar
  9. Michael R. Garey and David S. Johnson. Computers and intractability : a guide to the theory of NP-Completeness. A Series of books in the mathematical sciences. W.H. Freeman, 1979. Google Scholar
  10. Steven Gay, Renaud Hartert, and Pierre Schaus. Simple and scalable time-table filtering for the cumulative constraint. In Proceedings of the 21st International Conference on Principles and Practice of Constraint Programming (CP 2015), pages 149-157. Springer International Publishing, 2015. URL: https://doi.org/10.1007/978-3-319-23219-5_11.
  11. Rainer Kolisch and Arno Sprecher. Psplib - a project scheduling problem library: Or software - orsep operations research software exchange program. European Journal of Operational Research, 96(1):205-216, 1997. URL: https://doi.org/10.1016/S0377-2217(96)00170-1.
  12. Stefan Kreter, Julia Rieck, and Jürgen Zimmermann. Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars. European Journal of Operational Research, 251(2):387-403, 2016. URL: https://doi.org/10.1016/j.ejor.2015.11.021.
  13. Stefan Kreter, Andreas Schutt, and Peter J Stuckey. Using constraint programming for solving RCPSP/max-cal. Constraints, 22(3):432-462, 2017. URL: https://doi.org/10.1007/s10601-016-9266-6.
  14. Stefan Kreter, Andreas Schutt, Peter J. Stuckey, and Jürgen Zimmermann. Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems. European Journal of Operational Research, 266(2):472-486, 2018. URL: https://doi.org/10.1016/j.ejor.2017.10.014.
  15. Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP optimizer for scheduling. Constraints, 23(2):210-250, 2018. URL: https://doi.org/10.1007/s10601-018-9281-x.
  16. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP modelling language. In Proceedings of the 13th International Conference on Principles and Practice of Constraint Programming (CP 2007), pages 529-543. Springer Berlin Heidelberg, 2007. URL: https://doi.org/10.1007/978-3-540-74970-7_38.
  17. Wilhelmus Petronella Maria Nuijten. Time and resource constrained scheduling: a constraint satisfaction approach. PhD thesis, Technische Universiteit Eindhoven, 1994. Google Scholar
  18. Olga Ohrimenko, Peter J Stuckey, and Michael Codish. Propagation via lazy clause generation. Constraints, 14(3):357-391, 2009. URL: https://doi.org/10.1007/s10601-008-9064-x.
  19. Pierre Ouellet and Claude-Guy Quimper. Time-table extended-edge-finding for the cumulative constraint. In Proceedings of the 19th International Conference on Principles and Practice of Constraint Programming (CP 2013), pages 562-577. Springer Berlin Heidelberg, 2013. URL: https://doi.org/10.1007/978-3-642-40627-0_42.
  20. Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Explaining the cumulative propagator. Constraints, 16(3):250-282, 2011. URL: https://doi.org/10.1007/s10601-010-9103-2.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail