LIPIcs.CPM.2024.22.pdf
- Filesize: 0.83 MB
- 17 pages
For two strings u, v over some alphabet A, we investigate the problem of embedding u into w as a subsequence under the presence of generalised gap constraints. A generalised gap constraint is a triple (i, j, C_{i, j}), where 1 ≤ i < j ≤ |u| and C_{i, j} ⊆ A^*. Embedding u as a subsequence into v such that (i, j, C_{i, j}) is satisfied means that if u[i] and u[j] are mapped to v[k] and v[𝓁], respectively, then the induced gap v[k + 1..𝓁 - 1] must be a string from C_{i, j}. This generalises the setting recently investigated in [Day et al., ISAAC 2022], where only gap constraints of the form C_{i, i + 1} are considered, as well as the setting from [Kosche et al., RP 2022], where only gap constraints of the form C_{1, |u|} are considered. We show that subsequence matching under generalised gap constraints is NP-hard, and we complement this general lower bound with a thorough (parameterised) complexity analysis. Moreover, we identify several efficiently solvable subclasses that result from restricting the interval structure induced by the generalised gap constraints.
Feedback for Dagstuhl Publishing