LIPIcs.CSL.2024.12.pdf
- Filesize: 0.86 MB
- 20 pages
We study a new extension of the weak MSO logic, talking about boundedness. Instead of a previously considered quantifier 𝖴, expressing the fact that there exist arbitrarily large finite sets satisfying a given property, we consider a generalized quantifier 𝖴, expressing the fact that there exist tuples of arbitrarily large finite sets satisfying a given property. First, we prove that the new logic WMSO+𝖴_{tup} is strictly more expressive than WMSO+𝖴. In particular, WMSO+𝖴_{tup} is able to express the so-called simultaneous unboundedness property, for which we prove that it is not expressible in WMSO+𝖴. Second, we prove that it is decidable whether the tree generated by a given higher-order recursion scheme satisfies a given sentence of WMSO+𝖴_{tup}.
Feedback for Dagstuhl Publishing