LIPIcs.ECOOP.2024.28.pdf
- Filesize: 2.54 MB
- 27 pages
Basic Block Versioning (BBV) is a compilation technique for optimizing program execution. It consists in duplicating and specializing basic blocks of code according to the execution contexts of the blocks, up to a version limit. BBV has been used in Just-In-Time (JIT) compilers for reducing the dynamic type checks of dynamic languages. Our work revisits the BBV technique to adapt it to Ahead-of-Time (AOT) compilation. This Static BBV (SBBV) raises new challenges, most importantly how to ensure the convergence of the algorithm when the specializations of the basic blocks are not based on profiled variable values and how to select the good specialization contexts. SBBV opens new opportunities for more precise optimizations as the compiler can explore multiple versions and only keep those within the version limit that yield better generated code. In this paper, we present the main SBBV algorithm and its use to optimize the dynamic type checks, array bound checks, and mixed-type arithmetic operators often found in dynamic languages. We have implemented SBBV in two AOT compilers for the Scheme programming language that we have used to evaluate the technique’s effectiveness. On a suite of benchmarks, we have observed that even with a low limit of 2 versions, SBBV greatly reduces the number of dynamic type tests (by 54% and 62% on average) and accelerates the execution time (by about 10% on average). Previous work has needed a higher version limit to achieve a similar level of optimization. We also observe a small impact on compilation time and code size (a decrease in some cases).
Feedback for Dagstuhl Publishing