Data Reduction for Maximum Matching on Real-World Graphs: Theory and Experiments

Authors Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, Philipp Zschoche



PDF
Thumbnail PDF

File

LIPIcs.ESA.2018.53.pdf
  • Filesize: 497 kB
  • 13 pages

Document Identifiers

Author Details

Viatcheslav Korenwein
  • TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany
André Nichterlein
  • TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany
Rolf Niedermeier
  • TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany
Philipp Zschoche
  • TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany

Cite AsGet BibTex

Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data Reduction for Maximum Matching on Real-World Graphs: Theory and Experiments. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 53:1-53:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ESA.2018.53

Abstract

Finding a maximum-cardinality or maximum-weight matching in (edge-weighted) undirected graphs is among the most prominent problems of algorithmic graph theory. For n-vertex and m-edge graphs, the best known algorithms run in O~(m sqrt{n}) time. We build on recent theoretical work focusing on linear-time data reduction rules for finding maximum-cardinality matchings and complement the theoretical results by presenting and analyzing (thereby employing the kernelization methodology of parameterized complexity analysis) linear-time data reduction rules for the positive-integer-weighted case. Moreover, we experimentally demonstrate that these data reduction rules provide significant speedups of the state-of-the art implementation for computing matchings in real-world graphs: the average speedup is 3800% in the unweighted case and "just" 30% in the weighted case.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
Keywords
  • Maximum-cardinality matching
  • maximum-weight matching
  • linear-time algorithms
  • preprocessing
  • kernelization
  • parameterized complexity analysis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and W. Henry Suters. Crown structures for vertex cover kernelization. Theory of Computing Systems, 41(3):411-430, 2007. Google Scholar
  2. Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/fpt algorithms in practice: A case study of vertex cover. Theoretical Computer Science, 609:211-225, 2016. Google Scholar
  3. M. Bartha and M. Kresz. A depth-first algorithm to reduce graphs in linear time. In Proceeding of the 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC' 09), pages 273-281. IEEE, 2009. Google Scholar
  4. Matthias Bentert, Alexander Dittmann, Leon Kellerhals, André Nichterlein, and Rolf Niedermeier. Towards improving brandes' algorithm for betweenness centrality. CoRR, abs/1802.06701, 2018. URL: http://arxiv.org/abs/1802.06701.
  5. Lijun Chang, Wei Li, and Wenjie Zhang. Computing A near-maximum independent set in linear time by reducing-peeling. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD '17), pages 1181-1196. ACM, 2017. Google Scholar
  6. David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '18), pages 2765-2784, 2018. Google Scholar
  7. Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. Journal of the ACM, 61(1):1:1-1:23, 2014. Google Scholar
  8. Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for weighted matching in general graphs. ACM Transactions on Algorithms, 14(1):8:1-8:35, 2018. Google Scholar
  9. Richard M. Karp and Michael Sipser. Maximum matchings in sparse random graphs. In Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science (FOCS '81), pages 364-375. IEEE, 1981. Google Scholar
  10. Vladimir Kolmogorov. Blossom V: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation, 1(1):43-67, 2009. Google Scholar
  11. Bernd Korte and Jens Vygen. Combinatorial Optimization - Theory and Algorithms. Springer, 2018. Google Scholar
  12. Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, 2014.
  13. George B. Mertzios, André Nichterlein, and Rolf Niedermeier. The power of linear-time data reduction for maximum matching. In Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), LIPIcs, pages 46:1-46:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. Google Scholar
  14. Silvio Micali and Vijay V. Vazirani. An O(√|V| |E|) algorithm for finding maximum matching in general graphs. In Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science (FOCS '80), pages 17-27. IEEE, 1980. Google Scholar
  15. Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7(1):105-113, 1987. Google Scholar
  16. Sanne Wøhlk and Gilbert Laporte. Computational comparison of several greedy algorithms for the minimum cost perfect matching problem on large graphs. Computers & OR, 87:107-113, 2017. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail