LIPIcs.ESA.2018.70.pdf
- Filesize: 0.58 MB
- 14 pages
The Steiner forest problem asks for a minimum weight forest that spans a given number of terminal sets. The problem has famous linear programming based 2-approximations [Agrawal et al., 1995; Goemans and Williamson, 1995; Jain, 2001] whose bottleneck is the fact that the most natural formulation of the problem as an integer linear program (ILP) has an integrality gap of 2. We propose new cut-based ILP formulations for the problem along with exact branch-and-bound based algorithms. While our new formulations cannot improve the integrality gap, we can prove that one of them yields stronger linear programming bounds than the two previous strongest formulations: The directed cut formulation [Balakrishnan et al., 1989; Chopra and Rao, 1994] and the advanced flow-based formulation by Magnanti and Raghavan [Magnanti and Raghavan, 2005]. In an experimental evaluation, we show that the linear programming bounds of the new formulations are indeed strong on practical instances and that our new branch-and-bound algorithms outperform branch-and-bound algorithms based on the previous formulations. Our formulations can be seen as a cut-based analogon to [Magnanti and Raghavan, 2005], whose existence was an open problem.
Feedback for Dagstuhl Publishing