An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

Authors Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, Dimitrios M. Thilikos



PDF
Thumbnail PDF

File

LIPIcs.ESA.2020.51.pdf
  • Filesize: 1.23 MB
  • 17 pages

Document Identifiers

Author Details

Fedor V. Fomin
  • Department of Informatics, University of Bergen, Norway
Petr A. Golovach
  • Department of Informatics, University of Bergen, Norway
Giannos Stamoulis
  • Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece
  • Inter-university Postgraduate Programme "Algorithms, Logic, and Discrete Mathematics" (ALMA), Athens, Greece
Dimitrios M. Thilikos
  • LIRMM, Univ. Montpellier, CNRS, Montpellier, France

Cite AsGet BibTex

Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 51:1-51:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ESA.2020.51

Abstract

In general, a graph modification problem is defined by a graph modification operation ⊠ and a target graph property 𝒫. Typically, the modification operation ⊠ may be vertex removal, edge removal, edge contraction, or edge addition and the question is, given a graph G and an integer k, whether it is possible to transform G to a graph in 𝒫 after applying k times the operation ⊠ on G. This problem has been extensively studied for particilar instantiations of ⊠ and 𝒫. In this paper we consider the general property 𝒫_ϕ of being planar and, moreover, being a model of some First-Order Logic sentence ϕ (an FOL-sentence). We call the corresponding meta-problem Graph ⊠-Modification to Planarity and ϕ and prove the following algorithmic meta-theorem: there exists a function f: ℕ² → ℕ such that, for every ⊠ and every FOL sentence ϕ, the Graph ⊠-Modification to Planarity and ϕ is solvable in f(k,|ϕ|)⋅n² time. The proof constitutes a hybrid of two different classic techniques in graph algorithms. The first is the irrelevant vertex technique that is typically used in the context of Graph Minors and deals with properties such as planarity or surface-embeddability (that are not FOL-expressible) and the second is the use of Gaifman’s Locality Theorem that is the theoretical base for the meta-algorithmic study of FOL-expressible problems.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Graph modification Problems
  • Algorithmic meta-theorems
  • First Order Logic
  • Irrelevant vertex technique
  • Planar graphs
  • Surface embeddable graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Tight bounds for linkages in planar graphs. In Luca Aceto, Monika Henzinger, and Jirí Sgall, editors, Automata, Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer Science, pages 110-121. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-22006-7_10.
  2. Chandra Chekuri and Anastasios Sidiropoulos. Approximation algorithms for euler genus and related problems. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 167-176. IEEE Computer Society, 2013. URL: https://doi.org/10.1109/FOCS.2013.26.
  3. Julia Chuzhoy. An algorithm for the graph crossing number problem. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 303-312. ACM, 2011. URL: https://doi.org/10.1145/1993636.1993678.
  4. Julia Chuzhoy, Yury Makarychev, and Anastasios Sidiropoulos. On graph crossing number and edge planarization. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1050-1069. SIAM, 2011. URL: https://doi.org/10.1137/1.9781611973082.80.
  5. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  6. Bruno Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues. RAIRO Theor. Informatics Appl., 26:257-286, 1992. URL: https://doi.org/10.1051/ita/1992260302571.
  7. Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a conjecture by seese. J. Comb. Theory, Ser. B, 97(1):91-126, 2007. URL: https://doi.org/10.1016/j.jctb.2006.04.003.
  8. Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. The planar directed k-vertex-disjoint paths problem is fixed-parameter tractable. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 197-206. IEEE Computer Society, 2013. URL: https://doi.org/10.1109/FOCS.2013.29.
  9. Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, pages 270-279. IEEE Computer Society, 2007. URL: https://doi.org/10.1109/LICS.2007.31.
  10. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Bidimensional parameters and local treewidth. SIAM J. Discret. Math., 18(3):501-511, 2004. URL: https://doi.org/10.1137/S0895480103433410.
  11. Zdenek Dvorák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses of sparse graphs. J. ACM, 60(5):36:1-36:24, 2013. URL: https://doi.org/10.1145/2499483.
  12. Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-checking. SIAM J. Comput., 31(1):113-145, 2001. URL: https://doi.org/10.1137/S0097539799360768.
  13. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. URL: https://doi.org/10.1007/3-540-29953-X.
  14. Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction obstructions for treewidth. J. Comb. Theory, Ser. B, 101(5):302-314, 2011. URL: https://doi.org/10.1016/j.jctb.2011.02.008.
  15. Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Modification to planarity is fixed parameter tractable. In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 28:1-28:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.STACS.2019.28.
  16. Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable structures. J. ACM, 48(6):1184-1206, 2001. URL: https://doi.org/10.1145/504794.504798.
  17. Haim Gaifman. On local and non-local properties. In J. Stern, editor, Proceedings of the Herbrand Symposium, volume 107 of Studies in Logic and the Foundations of Mathematics, pages 105-135. Elsevier, 1982. URL: https://doi.org/10.1016/S0049-237X(08)71879-2.
  18. Petr A. Golovach, Marcin Kaminski, Spyridon Maniatis, and Dimitrios M. Thilikos. The parameterized complexity of graph cyclability. SIAM J. Discret. Math., 31(1):511-541, 2017. URL: https://doi.org/10.1137/141000014.
  19. Petr A. Golovach, Pim van 't Hof, and Daniël Paulusma. Obtaining planarity by contracting few edges. Theor. Comput. Sci., 476:38-46, 2013. URL: https://doi.org/10.1016/j.tcs.2012.12.041.
  20. Martin Grohe. Logic, graphs, and algorithms. In Jörg Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], volume 2 of Texts in Logic and Games, pages 357-422. Amsterdam University Press, 2008. Google Scholar
  21. Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological subgraphs is fixed-parameter tractable. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 479-488. ACM, 2011. URL: https://doi.org/10.1145/1993636.1993700.
  22. Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3):17:1-17:32, 2017. URL: https://doi.org/10.1145/3051095.
  23. Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1802-1811. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.130.
  24. Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 639-648. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/FOCS.2009.45.
  25. Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus. Algorithmica, 81(9):3655-3691, 2019. URL: https://doi.org/10.1007/s00453-019-00592-7.
  26. Stephan Kreutzer. Algorithmic meta-theorems. In Javier Esparza, Christian Michaux, and Charles Steinhorn, editors, Finite and Algorithmic Model Theory, volume 379 of London Mathematical Society Lecture Note Series, pages 177-270. Cambridge University Press, 2011. Google Scholar
  27. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is np-complete. J. Comput. Syst. Sci., 20(2):219-230, 1980. URL: https://doi.org/10.1016/0022-0000(80)90060-4.
  28. Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85-112, 2010. URL: https://doi.org/10.4086/toc.2010.v006a005.
  29. Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica, 62(3-4):807-822, 2012. URL: https://doi.org/10.1007/s00453-010-9484-z.
  30. Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J. Algorithms, 7(3):309-322, 1986. URL: https://doi.org/10.1016/0196-6774(86)90023-4.
  31. Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. J. Comb. Theory, Ser. B, 63(1):65-110, 1995. URL: https://doi.org/10.1006/jctb.1995.1006.
  32. Neil Robertson and Paul D. Seymour. Graph minors. XX. wagner’s conjecture. J. Comb. Theory, Ser. B, 92(2):325-357, 2004. URL: https://doi.org/10.1016/j.jctb.2004.08.001.
  33. Detlef Seese. Linear time computable problems and first-order descriptions. Math. Struct. Comput. Sci., 6(6):505-526, 1996. Google Scholar