Dynamic Matching Algorithms in Practice

Authors Monika Henzinger , Shahbaz Khan , Richard Paul , Christian Schulz

Thumbnail PDF


  • Filesize: 1.05 MB
  • 20 pages

Document Identifiers

Author Details

Monika Henzinger
  • University of Vienna, Faculty of Computer Science, Austria
Shahbaz Khan
  • Department of Computer Science, University of Helsinki, Finland
Richard Paul
  • University of Vienna, Faculty of Computer Science, Austria
Christian Schulz
  • University of Vienna, Faculty of Computer Science, Austria

Cite AsGet BibTex

Monika Henzinger, Shahbaz Khan, Richard Paul, and Christian Schulz. Dynamic Matching Algorithms in Practice. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 58:1-58:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


In recent years, significant advances have been made in the design and analysis of fully dynamic maximal matching algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. In this paper, we attempt to bridge the gap between theory and practice that is currently observed for the fully dynamic maximal matching problem. We engineer several algorithms and empirically study those algorithms on an extensive set of dynamic instances.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Matching
  • Dynamic Matching
  • Blossom Algorithm


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. High-quality shared-memory graph partitioning. In Marco Aldinucci, Luca Padovani, and Massimo Torquati, editors, Euro-Par 2018: Parallel Processing - 24th International Conference on Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018, Proceedings, volume 11014 of Lecture Notes in Computer Science, pages 659-671. Springer, 2018. URL: https://doi.org/10.1007/978-3-319-96983-1_47.
  2. Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic matching: Reducing integral algorithms to approximately-maximal fractional algorithms. In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, pages 7:1-7:16, 2018. Google Scholar
  3. D. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. Benchmarking for Graph Clustering and Partitioning. In Encyclopedia of Social Network Analysis and Mining. Springer, 2014. Google Scholar
  4. Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in O(log n) update time. SIAM J. Comput., 44(1):88-113, 2015. Google Scholar
  5. Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences, 43(9):842-844, 1957. URL: https://doi.org/10.1073/pnas.43.9.842.
  6. Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation ratios. In Proceedings of the 27th Symposium on Discrete Algorithms SODA, pages 692-711. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch50.
  7. Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) amortized update time. In 19th International Conf. on Integer Programming and Combinatorial Optimization IPCO, pages 86-98, 2017. Google Scholar
  8. Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic data structures for vertex cover and matching. SIAM J. Comput., 47(3):859-887, 2018. Google Scholar
  9. Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approximation algorithms for fully dynamic matching. In Proceedings of the 48th Annual Symposium on Theory of Computing, pages 398-411. ACM, 2016. Google Scholar
  10. Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate maximum matching and minimum vertex cover in O(log^3 n) worst case update time. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms SODA, pages 470-489. SIAM, 2017. Google Scholar
  11. Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchinava. Efficient parallel and external matching. In Euro-Par 2013, volume 8097 of LNCS, pages 659-670. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40047-6_66.
  12. Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking the polynomial worst-case time barrier. In 45th International Colloquium on Automata, Languages, and Programming ICALP, pages 33:1-33:14, 2018. Google Scholar
  13. T. Davis. The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices, 2008. URL: http://www.cise.ufl.edu/research/sparse/matrices/.
  14. Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles. Math. Program., 91(2):201-213, 2002. URL: https://doi.org/10.1007/s101070100263.
  15. D. Drake and S. Hougardy. A Simple Approximation Algorithm for the Weighted Matching Problem. Information Processing Letters, 85:211-213, 2003. Google Scholar
  16. Andre Droschinsky, Petra Mutzel, and Erik Thordsen. Shrinking trees not blossoms: A recursive maximum matching approach. In Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX 2020, pages 146-160. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611976007.12.
  17. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449-467, 1965. Google Scholar
  18. Harold Neil Gabow. Implementation of Algorithms for Maximum Matching on Nonbipartite Graphs. PhD thesis, Stanford University, Stanford, CA, USA, 1974. Google Scholar
  19. Zvi Galil, Silvio Micali, and Harold N. Gabow. An O(|E||V| log |V|) algorithm for finding a maximal weighted matching in general graphs. SIAM Journal Computing, 15(1):120-130, 1986. Google Scholar
  20. Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay Solomon. (1 + ε)-approximate incremental matching in constant deterministic amortized time. In Proceedings of the 20th Symposium on Discrete Algorithms, pages 1886-1898. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.114.
  21. Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th Symposium on Foundations of Computer Science, FOCS, pages 548-557. IEEE Computer Society, 2013. URL: https://doi.org/10.1109/FOCS.2013.65.
  22. Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster fully dynamic transitive closure in practice. In Simone Faro and Domenico Cantone, editors, 18th International Symposium on Experimental Algorithms, SEA 2020, June 16-18, 2020, Catania, Italy, volume 160 of LIPIcs, pages 14:1-14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.SEA.2020.14.
  23. J. E. Hopcroft and R. M. Karp. A n^5/2 algorithm for maximum matchings in bipartite. In 12th Annual Symposium on Switching and Automata Theory (SWAT), pages 122-125, 1971. URL: https://doi.org/10.1109/SWAT.1971.1.
  24. Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In 19th International Workshop Graph-Theoretic Concepts in Computer Science, volume 790 of LNCS, pages 99-111, 1993. Google Scholar
  25. Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data reduction for maximum matching on real-world graphs: Theory and experiments. In 26th European Symposium on Algorithms ESA, volume 112 of LIPIcs, pages 53:1-53:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ESA.2018.53.
  26. Jérôme Kunegis. KONECT: the koblenz network collection. In Leslie Carr, Alberto H. F. Laender, Bernadette Farias Lóscio, Irwin King, Marcus Fontoura, Denny Vrandecic, Lora Aroyo, José Palazzo M. de Oliveira, Fernanda Lima, and Erik Wilde, editors, 22nd World Wide Web Conference, WWW '13, pages 1343-1350. International World Wide Web Conferences Steering Committee / ACM, 2013. URL: https://doi.org/10.1145/2487788.2488173.
  27. J. Lescovec. Stanford Network Analysis Package (SNAP). URL: http://snap.stanford.edu/index.html.
  28. J. Maue and P. Sanders. Engineering Algorithms for Approximate Weighted Matching. In Proceedings of the 6th Workshop on Experimental Algorithms (WEA'07), volume 4525 of LNCS, pages 242-255. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-72845-0_19.
  29. Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, 1999. URL: http://www.mpi-sb.mpg.de/%7Emehlhorn/LEDAbook.html.
  30. Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and generalized on-line matching. In 46th IEEE Symposium on Foundations of Computer Science (FOCS), pages 264-273. IEEE Computer Society, 2005. URL: https://doi.org/10.1109/SFCS.2005.12.
  31. Silvio Micali and Vijay V. Vazirani. An O(√|V| |E|) algorithm for finding maximum matching in general graphs. In 21st Symposium on Foundations of Computer Science, pages 17-27. IEEE Computer Society, 1980. URL: https://doi.org/10.1109/SFCS.1980.12.
  32. Orlando Moreira, Merten Popp, and Christian Schulz. Evolutionary multi-level acyclic graph partitioning. In Hernán E. Aguirre and Keiki Takadama, editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pages 332-339. ACM, 2018. URL: https://doi.org/10.1145/3205455.3205464.
  33. Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal matching. ACM Trans. Algorithms, 12(1):7:1-7:15, 2016. Google Scholar
  34. Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover. In STOC, pages 457-464, 2010. URL: https://doi.org/10.1145/1806689.1806753.
  35. Julia Preusse, Jérôme Kunegis, Matthias Thimm, Thomas Gottron, and Steffen Staab. Structural dynamics of knowledge networks. In Proc. Int. Conf. on Weblogs and Social Media, 2013. Google Scholar
  36. Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In SODA, pages 118-126, 2007. URL: https://doi.org/10.1145/1283383.1283397.
  37. Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library - User Guide and Reference Manual. C++ in-depth series. Pearson / Prentice Hall, 2002. Google Scholar
  38. Shay Solomon. Fully dynamic maximal matching in constant update time. In 57th Symposium on Foundations of Computer Science FOCS, pages 325-334, 2016. Google Scholar
  39. Robert Endre Tarjan. Data structures and network algorithms, volume 44 of CBMS-NSF regional conference series in applied mathematics. SIAM, 1983. URL: https://doi.org/10.1137/1.9781611970265.
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail