A subset S of nodes in a graph G is a k-connected m-dominating set ((k,m)-cds) if the subgraph G[S] induced by S is k-connected and every v ∈ V⧵S has at least m neighbors in S. In the k-Connected m-Dominating Set ((k,m)-CDS) problem the goal is to find a minimum weight (k,m)-cds in a node-weighted graph. For m ≥ k we obtain the following approximation ratios. For general graphs our ratio O(k ln n) improves the previous best ratio O(k² ln n) of [Z. Nutov, 2018] and matches the best known ratio for unit weights of [Z. Zhang et al., 2018]. For unit disk graphs we improve the ratio O(k ln k) of [Z. Nutov, 2018] to min{m/(m-k),k^{2/3}} ⋅ O(ln² k) - this is the first sublinear ratio for the problem, and the first polylogarithmic ratio O(ln² k)/ε when m ≥ (1+ε)k; furthermore, we obtain ratio min{m/(m-k), √k} ⋅ O(ln² k) for uniform weights. These results are obtained by showing the same ratios for the Subset k-Connectivity problem when the set of terminals is an m-dominating set.
@InProceedings{nutov:LIPIcs.ESA.2020.73, author = {Nutov, Zeev}, title = {{Approximating k-Connected m-Dominating Sets}}, booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)}, pages = {73:1--73:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-162-7}, ISSN = {1868-8969}, year = {2020}, volume = {173}, editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.73}, URN = {urn:nbn:de:0030-drops-129392}, doi = {10.4230/LIPIcs.ESA.2020.73}, annote = {Keywords: k-connected graph, m-dominating set, approximation algorithm, rooted subset k-connectivity, subset k-connectivity} }
Feedback for Dagstuhl Publishing