Document

The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination

File

LIPIcs.ESA.2021.5.pdf
• Filesize: 1.62 MB
• 16 pages

Acknowledgements

Initial discussions took place at the https://dccg.upc.edu/irp2018/ in Barcelona, Spain, in 2018. We are grateful to the organizers for providing the platform to meet and collaborate.

Cite As

Carlos Alegría, Ioannis Mantas, Evanthia Papadopoulou, Marko Savić, Hendrik Schrezenmaier, Carlos Seara, and Martin Suderland. The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ESA.2021.5

Abstract

We introduce the Voronoi Diagram of Rotating Rays, a Voronoi structure where the input sites are rays, and the distance function is the counterclockwise angular distance between a point and a ray-site. This novel Voronoi diagram is motivated by illumination and coverage problems, where a domain has to be covered by floodlights (wedges) of uniform angle, and the goal is to find the minimum angle necessary to cover the domain. We study the diagram in the plane, and we present structural properties, combinatorial complexity bounds, and a construction algorithm. If the rays are induced by a convex polygon, we show how to construct the ray Voronoi diagram within this polygon in linear time. Using this information, we can find in optimal linear time the Brocard angle, the minimum angle required to illuminate a convex polygon with floodlights of uniform angle. This last algorithm improves upon previous results, settling an interesting open problem.

Subject Classification

ACM Subject Classification
• Theory of computation → Computational geometry
Keywords
• rotating rays
• Voronoi diagram
• oriented angular distance
• Brocard angle
• floodlight illumination
• coverage problems
• art gallery problems

Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

References

1. Carlos Alegría-Galicia, David Orden, Carlos Seara, and Jorge Urrutia. Illuminating polygons by edge-aligned floodlights of uniform angle (Brocard illumination). In Proc. European Workshop on Computational Geometry, pages 281-284, 2017.
2. Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Triangulations. World Scientific, 2013. URL: http://www.worldscientific.com/worldscibooks/10.1142/8685.
3. Piotr Berman, Jieun Jeong, Shiva P. Kasiviswanathan, and Bhuvan Urgaonkar. Packing to angles and sectors. In Proc. ACM symposium on Parallel algorithms and architectures, pages 171-180, 2007.
4. Arthur Bernhart. Polygons of pursuit. Scripta Mathematica, 24(1):23-50, 1959.
5. Ádám Besenyei. The Brocard angle and a geometrical gem from Dmitriev and Dynkin. The American Mathematical Monthly, 122(5):495-499, 2015.
6. Prosenjit Bose, Leonidas J. Guibas, Anna Lubiw, Mark Overmars, Diane Souvaine, and Jorge Urrutia. The floodlight problem. International Journal of Computational Geometry & Applications, 7(1-2):153-163, 1997.
7. John Casey. A sequel to the first six books of the elements of Euclid. Dublin University Press, 1888.
8. Felipe Contreras, Jurek Czyzowicz, Nicolas Fraiji, and Jorge Urrutia. Illuminating triangles and quadrilaterals with vertex floodlights. In Proc. Canadian Conference on Computational Geometry, 1998.
9. Jurek Czyzowicz, Stefan Dobrev, Benson Joeris, Evangelos Kranakis, Danny Krizanc, Jan Maňuch, Oscar Morales-Ponce, Jaroslav Opatrny, Ladislav Stacho, and Jorge Urrutia. Monitoring the plane with rotating radars. Graphs and Combinatorics, 31(2):393-405, 2015.
10. Jurek Czyzowicz, Eduardo Rivera-Campo, and Jorge Urrutia. Optimal floodlight illumination of stages. In Proc. Canadian Conference on Computational Geometry, pages 393-398, 1993.
11. Mark de Berg, Joachim Gudmundsson, Herman Haverkort, and Michael Horton. Voronoi diagrams with rotational distance costs. In Computational Geometry Week: Young Researchers Forum, 2017.
12. Nikolai A. Dmitriev and E Dynkin. On characteristic roots of stochastic matrices. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 10(2):167-184, 1946.
13. Vladimir Estivill-Castro, Joseph O'Rourke, Jorge Urrutia, and Dianna Xu. Illumination of polygons with vertex lights. Information Processing Letters, 56(1):9-13, 1995.
14. Sergiu Hart and Micha Sharir. Nonlinearity of Davenport—Schinzel sequences and of generalized path compression schemes. Combinatorica, 6(2):151-177, 1986.
15. John Hershberger. Finding the upper envelope of n line segments in O(nlog n) time. Information Processing Letters, 33(4):169-174, 1989.
16. Dan Ismailescu. Illuminating a convex polygon with vertex lights. Periodica Mathematica Hungarica, 57(2):177-184, 2008.
17. Rolf Klein. Concrete and Abstract Voronoi diagrams, volume 400. Springer Science & Business Media, 1989.
18. Rolf Klein, Elmar Langetepe, and Zahra Nilforoushan. Abstract Voronoi diagrams revisited. Computational Geometry: Theory and Applications, 42(9):885-902, 2009.
19. Rolf Klein and Andrzej Lingas. Hamiltonian abstract Voronoi diagrams in linear time. In Proc. International Symposium on Algorithms and Computation, pages 11-19, 1994.
20. Evangelos Kranakis, Danny Krizanc, and Oscar Morales. Maintaining connectivity in sensor networks using directional antennae. In Theoretical Aspects of Distributed Computing in Sensor Networks, pages 59-84. Springer, 2011.
21. Azin Neishaboori, Ahmed Saeed, Khaled A. Harras, and Amr Mohamed. On target coverage in mobile visual sensor networks. In Proc. ACM International Symposium on Mobility Management and Wireless Access, pages 39-46, 2014.
22. Joseph O'Rourke. Visibility. In Handbook of discrete and computational geometry, pages 875-896. CRC Press, 2017.
23. Joseph O'Rourke, Thomas Shermer, and Ileana Streinu. Illuminating convex polygons with vertex floodlights. In Proc. Canadian Conference on Computational Geometry, pages 151-156, 1995.
24. Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete & Computational Geometry, 12(3):327-345, 1994.
25. William Steiger and Ileana Streinu. Illumination by floodlights. Computational Geometry, 10(1):57-70, 1998.
26. Tsuyoshi Taki, Jun-ichi Hasegawa, and Teruo Fukumura. Development of motion analysis system for quantitative evaluation of teamwork in soccer games. In Proc. IEEE International Conference on Image Processing, volume 3, pages 815-818. IEEE, 1996.
27. Csaba D. Tóth. Art galleries with guards of uniform range of vision. Computational Geometry, 21(3):185-192, 2002.
28. Jorge Urrutia. Art gallery and illumination problems. In Handbook of Computational Geometry, pages 973-1027. Elsevier, 2000.
X

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail