Faster Approximate Covering of Subcurves Under the Fréchet Distance

Authors Frederik Brüning, Jacobus Conradi, Anne Driemel



PDF
Thumbnail PDF

File

LIPIcs.ESA.2022.28.pdf
  • Filesize: 0.94 MB
  • 16 pages

Document Identifiers

Author Details

Frederik Brüning
  • Department of Computer Science, Universität Bonn, Germany
Jacobus Conradi
  • Department of Computer Science, Universität Bonn, Germany
Anne Driemel
  • Hausdorff Center for Mathematics, Universität Bonn, Germany

Cite AsGet BibTex

Frederik Brüning, Jacobus Conradi, and Anne Driemel. Faster Approximate Covering of Subcurves Under the Fréchet Distance. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.ESA.2022.28

Abstract

Subtrajectory clustering is an important variant of the trajectory clustering problem, where the start and endpoints of trajectory patterns within the collected trajectory data are not known in advance. We study this problem in the form of a set cover problem for a given polygonal curve: find the smallest number k of representative curves such that any point on the input curve is contained in a subcurve that has Fréchet distance at most a given Δ to a representative curve. We focus on the case where the representative curves are line segments and approach this NP-hard problem with classical techniques from the area of geometric set cover: we use a variant of the multiplicative weights update method which was first suggested by Brönniman and Goodrich for set cover instances with small VC-dimension. We obtain a bicriteria-approximation algorithm that computes a set of O(klog(k)) line segments that cover a given polygonal curve of n vertices under Fréchet distance at most O(Δ). We show that the algorithm runs in Õ(k² n + k n³) time in expectation and uses Õ(k n + n³) space. For input curves that are c-packed and lie in the plane, we bound the expected running time by Õ(k² c² n) and the space by Õ(kn + c² n). In addition, we present a variant of the algorithm that uses implicit weight updates on the candidate set and thereby achieves near-linear running time in n without any assumptions on the input curve, while keeping the same approximation bounds. This comes at the expense of a small (polylogarithmic) dependency on the relative arclength.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Clustering
  • Set cover
  • Fréchet distance
  • Approximation algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan, and Erin Taylor. Subtrajectory clustering: Models and algorithms. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS '18, pages 75-87, New York, NY, USA, 2018. Association for Computing Machinery. URL: https://doi.org/10.1145/3196959.3196972.
  2. Hugo A. Akitaya, Frederik Brüning, Erin Chambers, and Anne Driemel. Subtrajectory clustering: Finding set covers for set systems of subcurves, 2021. URL: https://doi.org/10.48550/ARXIV.2103.06040.
  3. Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl., 5:75-91, 1995. URL: https://doi.org/10.1142/S0218195995000064.
  4. Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 1999. URL: https://doi.org/10.1017/CBO9780511624216.
  5. Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications. Theory of Computing, 8(1):121-164, 2012. URL: https://doi.org/10.4086/toc.2012.v008a006.
  6. Hervé Brönnimann and Michael T Goodrich. Almost optimal set covers in finite VC-dimension. Discrete & Computational Geometry, 14(4):463-479, 1995. URL: https://doi.org/10.1007/BF02570718.
  7. Frederik Brüning, Jacobus Conradi, and Anne Driemel. Faster approximate covering of subcurves under the fréchet distance, 2022. URL: https://doi.org/10.48550/ARXIV.2204.09949.
  8. Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sacristan, Rodrigo I. Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map construction. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL '17, New York, NY, USA, 2017. Association for Computing Machinery. URL: https://doi.org/10.1145/3139958.3139964.
  9. Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Jorren Hendriks, Erfan Hosseini Sereshgi, Vera Sacristán, Rodrigo I. Silveira, Jorrick Sleijster, Frank Staals, and Carola Wenk. Improved map construction using subtrajectory clustering. In LocalRec'20: Proceedings of the 4th ACM SIGSPATIAL Workshop on Location-Based Recommendations, Geosocial Networks, and Geoadvertising, LocalRec@SIGSPATIAL 2020, November 3, 2020, Seattle, WA, USA, pages 5:1-5:4, 2020. URL: https://doi.org/10.1145/3423334.3431451.
  10. Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Maarten Löffler, and Jun Luo. Detecting commuting patterns by clustering subtrajectories. Int. J. Comput. Geom. Appl., 21(3):253-282, 2011. URL: https://doi.org/10.1142/S0218195911003652.
  11. Maike Buchin, Bernhard Kilgus, and Andrea Kölzsch. Group diagrams for representing trajectories. International Journal of Geographical Information Science, 34(12):2401-2433, 2020. URL: https://doi.org/10.1080/13658816.2019.1684498.
  12. Maike Buchin and Carola Wenk. Inferring movement patterns from geometric similarity. J. Spatial Inf. Sci., 21(1):63-69, 2020. URL: https://doi.org/10.5311/JOSIS.2020.21.724.
  13. Kenneth L Clarkson. Las vegas algorithms for linear and integer programming when the dimension is small. Journal of the ACM (JACM), 42(2):488-499, 1995. URL: https://doi.org/10.1145/201019.201036.
  14. Mark de Berg, Atlas F. Cook, and Joachim Gudmundsson. Fast Fréchet queries. Computational Geometry, 46(6):747-755, 2013. URL: https://doi.org/10.1016/j.comgeo.2012.11.006.
  15. Andrew T Duchowski. A breadth-first survey of eye-tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4):455-470, 2002. URL: https://doi.org/10.3758/BF03195475.
  16. Paul W. Goldberg and Mark R. Jerrum. Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real numbers. Machine Learning, 18:131-148, 1995. URL: https://doi.org/10.1007/BF00993408.
  17. Joachim Gudmundsson, Yuan Sha, and Sampson Wong. Approximating the packedness of polygonal curves, 2020. URL: https://doi.org/10.48550/ARXIV.2009.07789.
  18. Joachim Gudmundsson and Nacho Valladares. A GPU approach to subtrajectory clustering using the fréchet distance. IEEE Trans. Parallel Distributed Syst., 26(4):924-937, 2015. URL: https://doi.org/10.1109/TPDS.2014.2317713.
  19. Joachim Gudmundsson and Sampson Wong. Cubic upper and lower bounds for subtrajectory clustering under the continuous fréchet distance, 2021. URL: https://doi.org/10.48550/ARXIV.2110.15554.
  20. David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. Discrete & Computational Geometry, 2(2):127-151, 1987. URL: https://doi.org/10.1007/BF02187876.
  21. Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst, Halszka Jarodzka, and Joost Van de Weijer. Eye tracking: A comprehensive guide to methods and measures. OUP Oxford, 2011. URL: https://global.oup.com/academic/product/eye-tracking-9780199697083.
  22. Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and machine intelligence, 36(7):1325-1339, 2013. URL: https://doi.org/10.1109/TPAMI.2013.248.
  23. Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-and-group framework. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12-14, 2007, pages 593-604, 2007. URL: https://doi.org/10.1145/1247480.1247546.
  24. Sen Qiao, Y. Wang, and J. Li. Real-time human gesture grading based on OpenPose. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pages 1-6, 2017. URL: https://doi.org/10.1109/CISP-BMEI.2017.8301910.
  25. Roniel S. De Sousa, Azzedine Boukerche, and Antonio A. F. Loureiro. Vehicle trajectory similarity: Models, methods, and applications. ACM Comput. Surv., 53(5), September 2020. URL: https://doi.org/10.1145/3406096.
  26. Sheng Wang, Zhifeng Bao, J Shane Culpepper, and Gao Cong. A survey on trajectory data management, analytics, and learning. ACM Computing Surveys (CSUR), 54(2):1-36, 2021. URL: https://doi.org/10.1145/3440207.
  27. Guan Yuan, Penghui Sun, Jie Zhao, Daxing Li, and Canwei Wang. A review of moving object trajectory clustering algorithms. Artificial Intelligence Review, 47(1):123-144, 2017. URL: https://doi.org/10.1007/s10462-016-9477-7.