Simultaneous Representation of Interval Graphs in the Sunflower Case

Authors Ignaz Rutter , Peter Stumpf

Thumbnail PDF


  • Filesize: 0.88 MB
  • 15 pages

Document Identifiers

Author Details

Ignaz Rutter
  • Faculty of Computer Science and Mathematics, University of Passau, Germany
Peter Stumpf
  • Faculty of Computer Science and Mathematics, University of Passau, Germany

Cite AsGet BibTex

Ignaz Rutter and Peter Stumpf. Simultaneous Representation of Interval Graphs in the Sunflower Case. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 90:1-90:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


A simultaneous representation of (vertex-labeled) graphs G_1,… ,G_k consists of a (geometric) intersection representation R_i for each graph G_i such that each vertex v is represented by the same geometric object in each R_i for which G_i contains v. While Jampani and Lubiw showed that the existence of simultaneous interval representations for k = 2 can be tested efficiently (2010), testing it for graphs where k is part of the input is NP-complete (Bok and Jedličková, 2018). An important special case of simultaneous representations is the sunflower case, where G_i ∩ G_j = (V(G_i)∩ V(G_j),E(G_i)∩ E(G_j)) is the same graph for each i ≠ j. We give an O(∑_{i=1}^k (|V(G_i)|+|E(G_i)|))-time algorithm for deciding the existence of a simultaneous interval representation for the sunflower case, even when k is part of the input. This answers an open question of Jampani and Lubiw.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Interval Graphs
  • Sunflower Case
  • Simultaneous Representation
  • Recognition
  • Geometric Intersection Graphs


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Bengt Aspvall, Michael F. Plass, and Robert E. Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121-123, 1979. URL:
  2. Giuseppe Di Battista and Enrico Nardelli. Hierarchies and planarity theory. IEEE Trans. Syst. Man Cybern., 18(6):1035-1046, 1988. URL:
  3. Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous embedding of planar graphs. CoRR, abs/1204.5853, 2012. URL:
  4. Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms, 12(2):16:1-16:46, 2016. URL:
  5. Jan Bok and Nikola Jedličková. A note on simultaneous representation problem for interval and circular-arc graphs. arXiv preprint, 2018. URL:
  6. Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13(3):335-379, 1976. URL:
  7. Guido Brückner and Ignaz Rutter. Partial and constrained level planarity. In Philip N. Klein, editor, Symposium on Discrete Algorithms, SODA, pages 2000-2011. SIAM, 2017. URL:
  8. Steven Chaplick, Radoslav Fulek, and Pavel Klavík. Extending partial representations of circle graphs. J. Graph Theory, 91(4):365-394, 2019. URL:
  9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. MIT press, Cambridge, 2009. Google Scholar
  10. Jirí Fiala, Ignaz Rutter, Peter Stumpf, and Peter Zeman. Extending partial representations of circular-arc graphs. In Michael A. Bekos and Michael Kaufmann, editors, Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG 2022, volume 13453 of Lecture Notes in Computer Science, pages 230-243. Springer, 2022. URL:
  11. Simon D. Fink, Matthias Pfretzschner, and Ignaz Rutter. Experimental comparison of pc-trees and pq-trees. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 43:1-43:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL:
  12. Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific journal of mathematics, 15(3):835-855, 1965. Google Scholar
  13. Dov Harel and Robert E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing, 13(2):338-355, 1984. URL:
  14. Wen-Lian Hsu. PC-trees vs. PQ-trees. In Jie Wang, editor, Computing and Combinatorics, 7th Annual International Conference, COCOON, volume 2108 of Lecture Notes in Computer Science, pages 207-217. Springer, 2001. URL:
  15. Krishnam Raju Jampani and Anna Lubiw. Simultaneous interval graphs. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms and Computation: 21st International Symposium, ISAAC 2010, Jeju Island, Proceedings, Part I, pages 206-217. Springer, 2010. URL:
  16. Krishnam Raju Jampani and Anna Lubiw. Simultaneous interval graphs. In Algorithms and Computation, pages 206-217. Springer, 2010. Google Scholar
  17. Krishnam Raju Jampani and Anna Lubiw. The simultaneous representation problem for chordal, comparability and permutation graphs. Journal of Graph Algorithms and Applications, 16(2):283-315, 2012. URL:
  18. Pavel Klavík, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell, and Tomáš Vyskočil. Extending partial representations of proper and unit interval graphs. Algorithmica, 77(4):1071-1104, April 2017. URL:
  19. Miriam Münch, Ignaz Rutter, and Peter Stumpf. Partial and simultaneous transitive orientations via modular decompositions. In Sang Won Bae and Heejin Park, editors, 33rd International Symposium on Algorithms and Computation, ISAAC, volume 248 of LIPIcs, pages 51:1-51:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL:
  20. Ignaz Rutter, Darren Strash, Peter Stumpf, and Michael Vollmer. Simultaneous representation of proper and unit interval graphs. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, Proceedings of the 27th Annual European Symposium on Algorithms (ESA'19), volume 144 of LIPIcs, pages 80:1-80:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: