List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs

Authors Barış Can Esmer , Jacob Focke , Dániel Marx , Paweł Rzążewski



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.39.pdf
  • Filesize: 1.02 MB
  • 20 pages

Document Identifiers

Author Details

Barış Can Esmer
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
  • Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Germany
Jacob Focke
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Dániel Marx
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Paweł Rzążewski
  • Warsaw University of Technology, Poland
  • University of Warsaw, Poland

Cite AsGet BibTex

Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. List Homomorphisms by Deleting Edges and Vertices: Tight Complexity Bounds for Bounded-Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.39

Abstract

The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. Given graphs G, H, and lists L(v) ⊆ V(H) for every v ∈ V(G), a list homomorphism from (G,L) to H is a function f:V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). The graph H may have loops. For a fixed H, the input of the optimization problem LHomVD(H) is a graph G with lists L(v), and the task is to find a set X of vertices having minimum size such that (G-X,L) has a list homomorphism to H. We define analogously the edge-deletion variant LHomED(H), where we have to delete as few edges as possible from G to obtain a graph that has a list homomorphism. This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut. For both variants, we first characterize those graphs H that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed H. Second, as our main result, we determine for every graph H for which the problem is NP-hard, the smallest possible constant c_H such that the problem can be solved in time c^t_H⋅ n^{𝒪(1)} if a tree decomposition of G having width t is given in the input. Let i(H) be the maximum size of a set of vertices in H that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD(H), we show that the smallest possible constant is i(H)+1 for every H: - Given a tree decomposition of width t of G, LHomVD(H) can be solved in time (i(H)+1)^t⋅ n^{𝒪(1)}. - For any ε > 0 and H, an (i(H)+1-ε)^t⋅ n^{𝒪(1)} algorithm would violate the Strong Exponential-Time Hypothesis (SETH). The situation is more complex for the edge-deletion version. For every H, one can solve LHomED(H) in time i(H)^t⋅ n^{𝒪(1)} if a tree decomposition of width t is given. However, the existence of a specific type of decomposition of H shows that there are graphs H where LHomED(H) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than i(H). Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed H.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Graph Homomorphism
  • List Homomorphism
  • Vertex Deletion
  • Edge Deletion
  • Multiway Cut
  • Parameterized Complexity
  • Tight Bounds
  • Treewidth
  • SETH

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jan Bok, Richard C. Brewster, Tomás Feder, Pavol Hell, and Nikola Jedlicková. List homomorphism problems for signed graphs. In Javier Esparza and Daniel Král', editors, 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 20:1-20:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.MFCS.2020.20.
  2. Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 8:1-8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.8.
  3. Rajesh Chitnis, László Egri, and Dániel Marx. List H-coloring a graph by removing few vertices. Algorithmica, 78(1):110-146, 2017. URL: https://doi.org/10.1007/s00453-016-0139-6.
  4. Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting Hamiltonian cycles via matrix rank. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1080-1099. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.70.
  5. Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650-1669. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch113.
  6. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  7. Víctor Dalmau, László Egri, Pavol Hell, Benoît Larose, and Arash Rafiey. Descriptive complexity of list H-coloring problems in logspace: A refined dichotomy. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 487-498. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/LICS.2015.52.
  8. Josep Díaz, Maria J. Serna, and Dimitrios M. Thilikos. Recent results on parameterized H-colorings. In Jaroslav Nešetřil and Peter Winkler, editors, Graphs, Morphisms and Statistical Physics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, March 19-21, 2001, volume 63 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 65-85. DIMACS/AMS, 2001. URL: https://doi.org/10.1090/dimacs/063/05.
  9. Josep Díaz, Maria J. Serna, and Dimitrios M. Thilikos. Counting h-colorings of partial k-trees. Theor. Comput. Sci., 281(1-2):291-309, 2002. URL: https://doi.org/10.1016/S0304-3975(02)00017-8.
  10. László Egri, Pavol Hell, Benoît Larose, and Arash Rafiey. Space complexity of list H-colouring: a dichotomy. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 349-365. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.26.
  11. László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from bounded-treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 27:1-27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.STACS.2018.27.
  12. Barış Can Esmer, Jacob Focke, Dániel Marx, and Paweł Rzążewski. Fundamental problems on bounded-treewidth graphs: The real source of hardness. CoRR, abs/2402.07331, 2024. URL: https://doi.org/10.48550/arXiv.2402.07331.
  13. Tomas Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial Theory, Series B, 72(2):236-250, 1998. URL: https://doi.org/10.1006/jctb.1997.1812.
  14. Tomás Feder and Pavol Hell. Complexity of correspondence H-colourings. Discret. Appl. Math., 281:235-245, 2020. URL: https://doi.org/10.1016/j.dam.2019.11.005.
  15. Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs. Comb., 19(4):487-505, 1999. URL: https://doi.org/10.1007/s004939970003.
  16. Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homomorphisms. J. Graph Theory, 42(1):61-80, 2003. URL: https://doi.org/10.1002/jgt.10073.
  17. Tomás Feder, Pavol Hell, and Jing Huang. The structure of bi-arc trees. Discret. Math., 307(3-5):393-401, 2007. URL: https://doi.org/10.1016/j.disc.2005.09.031.
  18. Tomás Feder, Pavol Hell, David G. Schell, and Juraj Stacho. Dichotomy for tree-structured trigraph list homomorphism problems. Discret. Appl. Math., 159(12):1217-1224, 2011. URL: https://doi.org/10.1016/j.dam.2011.04.005.
  19. Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3664-3683. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch140.
  20. Jacob Focke, Dániel Marx, and Paweł Rzążewski. Counting list homomorphisms from graphs of bounded treewidth: tight complexity bounds. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 431-458. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.22.
  21. Geňa Hahn and Claude Tardif. Graph homomorphisms: structure and symmetry, pages 107-166. Springer Netherlands, Dordrecht, 1997. URL: https://doi.org/10.1007/978-94-015-8937-6_4.
  22. Falko Hegerfeld and Stefan Kratsch. Towards exact structural thresholds for parameterized complexity. In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 17:1-17:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.IPEC.2022.17.
  23. Pavol Hell, Monaldo Mastrolilli, Mayssam Mohammadi Nevisi, and Arash Rafiey. Approximation of minimum cost homomorphisms. In Leah Epstein and Paolo Ferragina, editors, Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, volume 7501 of Lecture Notes in Computer Science, pages 587-598. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-33090-2_51.
  24. Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B, 48(1):92-110, 1990. URL: https://doi.org/10.1016/0095-8956(90)90132-J.
  25. Pavol Hell and Jaroslav Nešetřil. Counting list homomorphisms and graphs with bounded degrees. In Jaroslav Nešetřil and Peter Winkler, editors, Graphs, Morphisms and Statistical Physics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, March 19-21, 2001, volume 63 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 105-112. DIMACS/AMS, 2001. URL: https://doi.org/10.1090/dimacs/063/08.
  26. Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford lecture series in mathematics and its applications. Oxford University Press, 2004. Google Scholar
  27. Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity. Comput. Sci. Rev., 2(3):143-163, 2008. URL: https://doi.org/10.1016/j.cosrev.2008.10.003.
  28. Pavol Hell and Jaroslav Nešetřil. In praise of homomorphisms. Comput. Sci. Rev., 40:100352, 2021. URL: https://doi.org/10.1016/j.cosrev.2020.100352.
  29. Pavol Hell and Arash Rafiey. The dichotomy of list homomorphisms for digraphs. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1703-1713. SIAM, 2011. URL: https://doi.org/10.1137/1.9781611973082.131.
  30. Pavol Hell and Arash Rafiey. The dichotomy of minimum cost homomorphism problems for digraphs. SIAM J. Discret. Math., 26(4):1597-1608, 2012. URL: https://doi.org/10.1137/100783856.
  31. Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters, tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90-117, 2019. URL: https://doi.org/10.1016/j.dam.2018.11.002.
  32. Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed flow-augmentation. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 938-947. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520018.
  33. Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-valued CSPs. SIAM J. Comput., 46(3):1087-1110, 2017. URL: https://doi.org/10.1137/16M1091836.
  34. Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs. J. ACM, 60(2):10:1-10:38, 2013. URL: https://doi.org/10.1145/2450142.2450146.
  35. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, 2018. URL: https://doi.org/10.1145/3170442.
  36. Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 95:1-95:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.95.
  37. Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized by treewidth and list size (but counting is hard). In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 22:1-22:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.IPEC.2022.22.
  38. Hermann A. Maurer, Arto Salomaa, and Derick Wood. Colorings and interpretations: a connection between graphs and grammar forms. Discret. Appl. Math., 3(2):119-135, 1981. URL: https://doi.org/10.1016/0166-218X(81)90037-8.
  39. Hermann A. Maurer, Ivan Hal Sudborough, and Emo Welzl. On the complexity of the general coloring problem. Inf. Control., 51(2):128-145, 1981. URL: https://doi.org/10.1016/S0019-9958(81)90226-6.
  40. Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the list homomorphism problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 74:1-74:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ESA.2020.74.
  41. Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of the graph homomorphism problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487-508, 2021. URL: https://doi.org/10.1137/20M1320146.
  42. Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. J. ACM, 63(4):37:1-37:33, 2016. URL: https://doi.org/10.1145/2974019.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail