Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs

Authors Sally Dong, Guanghao Ye



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.49.pdf
  • Filesize: 0.88 MB
  • 14 pages

Document Identifiers

Author Details

Sally Dong
  • University of Washington, Seattle, WA, USA
Guanghao Ye
  • Massachusetts Institute of Technology, Cambridge, MA, USA

Cite AsGet BibTex

Sally Dong and Guanghao Ye. Faster Min-Cost Flow and Approximate Tree Decomposition on Bounded Treewidth Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 49:1-49:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.49

Abstract

We present an algorithm for min-cost flow in graphs with n vertices and m edges, given a tree decomposition of width τ and size S, and polynomially bounded, integral edge capacities and costs, running in Õ(m√{τ} + S) time. This improves upon the previous fastest algorithm in this setting achieved by the bounded-treewidth linear program solver of [Gu and Song, 2022; Dong et al., 2024], which runs in Õ(m τ^{(ω+1)/2}) time, where ω ≈ 2.37 is the matrix multiplication exponent. Our approach leverages recent advances in structured linear program solvers and robust interior point methods (IPM). In general graphs where treewidth is trivially bounded by n, the algorithm runs in Õ(m √ n) time, which is the best-known result without using the Lee-Sidford barrier or 𝓁₁ IPM, demonstrating the surprising power of robust interior point methods. As a corollary, we obtain a Õ(tw³ ⋅ m) time algorithm to compute a tree decomposition of width O(tw⋅ log(n)), given a graph with m edges.

Subject Classification

ACM Subject Classification
  • Theory of computation → Approximation algorithms analysis
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Network optimization
Keywords
  • Min-cost flow
  • tree decomposition
  • interior point method
  • bounded treewidth graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277-284, 1987. URL: https://doi.org/10.1137/0608024.
  2. Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite programs. Journal of the ACM (JACM), 63(2):1-35, 2016. URL: https://doi.org/10.1145/2837020.
  3. Per Austrin, Toniann Pitassi, and Yu Wu. Inapproximability of treewidth, one-shot pebbling, and related layout problems. In International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX), pages 13-24. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-32512-0_2.
  4. Jan van den Band, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, Richard Peng, and Aaron Sidford. Faster maxflow via improved dynamic spectral vertex sparsifiers. CoRR, abs/2112.00722, 2021. URL: https://doi.org/10.48550/arXiv.2112.00722.
  5. Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental sssp and approximate min-cost flow in almost-linear time. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1000-1008. IEEE, 2022. URL: https://doi.org/10.1109/FOCS52979.2021.00100.
  6. Hans L Bodlaender, Pål Gronås Drange, Markus S Dregi, Fedor V Fomin, Daniel Lokshtanov, and Michał Pilipczuk. A c^kn 5-approximation algorithm for treewidth. SIAM Journal on Computing, 45(2):317-378, 2016. URL: https://doi.org/10.1137/130947374.
  7. Hans L Bodlaender, John R Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238-255, 1995. URL: https://doi.org/10.1006/jagm.1995.1009.
  8. Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on graphs of bounded treewidth. The Computer Journal, 51(3):255-269, 2008. URL: https://doi.org/10.1093/comjnl/bxm037.
  9. Jan van den Brand. A deterministic linear program solver in current matrix multiplication time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 259-278. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.16.
  10. Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Minimum cost flows, MDPs, and ℓ1-regression in nearly linear time for dense instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 859-869, 2021. URL: https://doi.org/10.1145/3406325.3451108.
  11. Sebastian Brandt and Roger Wattenhofer. Approximating small balanced vertex separators in almost linear time. Algorithmica, 81:4070-4097, 2019. URL: https://doi.org/10.1007/s00453-018-0490-x.
  12. Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612-623. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00064.
  13. Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix multiplication time. Journal of the ACM (JACM), 68(1):1-39, 2021. URL: https://doi.org/10.1145/3424305.
  14. Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006. Google Scholar
  15. Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Guanghao Ye. Nested dissection meets ipms: Planar min-cost flow in nearly-linear time. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 124-153. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.7.
  16. Sally Dong, Gramoz Goranci, Lawrence Li, Sushant Sachdeva, and Guanghao Ye. Fast algorithms for separable linear programs. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3558-3604. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.127.
  17. Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs with small treewidth: A multiscale representation of robust central path. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages 1784-1797. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451056.
  18. Sally Dong and Guanghao Ye. Faster min-cost flow and approximate tree decomposition on bounded treewidth graphs. CoRR, abs/2308.14727, 2023. URL: https://doi.org/10.48550/arXiv.2308.14727.
  19. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity, volume 4 of Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  20. David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva. Sampling random spanning trees faster than matrix multiplication. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 730-742, 2017. URL: https://doi.org/10.1145/3055399.3055499.
  21. David Eppstein, Zvi Galil, Giuseppe F Italiano, and Thomas H Spencer. Separator based sparsification: I. planarity testing and minimum spanning trees. journal of computer and system sciences, 52(1):3-27, 1996. URL: https://doi.org/10.1006/jcss.1996.0002.
  22. Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. Improved approximation algorithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629, 2008. URL: https://doi.org/10.1137/05064299X.
  23. Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, Michał Pilipczuk, and Marcin Wrochna. Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. ACM Transactions on Algorithms (TALG), 14(3):1-45, 2018. URL: https://doi.org/10.1145/3186898.
  24. Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster than Goldberg-Rao. In 62st IEEE Annual Symposium on Foundations of Computer Science, FOCS2021. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00058.
  25. Gramoz Goranci, Monika Henzinger, and Pan Peng. Dynamic effective resistances and approximate Schur Complement on separable graphs. In 26th Annual European Symposium on Algorithms, ESA 2018, volume 112 of LIPIcs, pages 40:1-40:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ESA.2018.40.
  26. Yuzhou Gu and Zhao Song. A faster small treewidth SDP solver. arXiv preprint arXiv:2211.06033, 2022. URL: https://doi.org/10.48550/arXiv.2211.06033.
  27. Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster shortest-path algorithms for planar graphs. Journal of Computer and System Sciences, 55(1):3-23, 1997. URL: https://doi.org/10.1006/jcss.1997.1493.
  28. Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian system solvers. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 540-559. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.33.
  29. Donggu Kang and James Payor. Flow rounding. CoRR, abs/1507.08139, 2015. URL: https://doi.org/10.48550/arXiv.1507.08139.
  30. N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373-395, December 1984. URL: https://doi.org/10.1007/BF02579150.
  31. Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear programs in Õ(√rank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 424-433. IEEE, 2014. URL: https://doi.org/10.1109/FOCS.2014.52.
  32. Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787-832, 1999. URL: https://doi.org/10.1145/331524.331526.
  33. Richard J Lipton, Donald J Rose, and Robert Endre Tarjan. Generalized nested dissection. SIAM journal on numerical analysis, 16(2):346-358, 1979. URL: https://doi.org/10.1137/0716027.
  34. James Renegar. A polynomial-time algorithm, based on Newton’s method, for linear programming. Mathematical programming, 40(1-3):59-93, 1988. URL: https://doi.org/10.1007/BF01580724.
  35. Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 81-90, 2004. URL: https://doi.org/10.1145/1007352.1007372.
  36. Richard Y Zhang and Javad Lavaei. Sparse semidefinite programs with near-linear time complexity. In 2018 IEEE Conference on Decision and Control (CDC), pages 1624-1631. IEEE, 2018. URL: https://doi.org/10.1109/CDC.2018.8619478.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail