Finding Perfect Matchings in Bridgeless Cubic Multigraphs Without Dynamic (2-)connectivity

Authors Paweł Gawrychowski , Mateusz Wasylkiewicz



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.59.pdf
  • Filesize: 0.68 MB
  • 14 pages

Document Identifiers

Author Details

Paweł Gawrychowski
  • University of Wrocław, Poland
Mateusz Wasylkiewicz
  • University of Wrocław, Poland

Cite AsGet BibTex

Paweł Gawrychowski and Mateusz Wasylkiewicz. Finding Perfect Matchings in Bridgeless Cubic Multigraphs Without Dynamic (2-)connectivity. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 59:1-59:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.59

Abstract

Petersen’s theorem, one of the earliest results in graph theory, states that every bridgeless cubic multigraph contains a perfect matching. While the original proof was neither constructive nor algorithmic, Biedl, Bose, Demaine, and Lubiw [J. Algorithms 38(1)] showed how to implement a later constructive proof by Frink in 𝒪(nlog⁴n) time using a fully dynamic 2-edge-connectivity structure. Then, Diks and Stańczyk [SOFSEM 2010] described a faster approach that only needs a fully dynamic connectivity structure and works in 𝒪(nlog²n) time. Both algorithms, while reasonable simple, utilize non-trivial (2-edge-)connectivity structures. We show that this is not necessary, and in fact a structure for maintaining a dynamic tree, e.g. link-cut trees, suffices to obtain a simple 𝒪(nlog n) time algorithm.

Subject Classification

ACM Subject Classification
  • Theory of computation → Graph algorithms analysis
Keywords
  • perfect matching
  • cubic graphs
  • bridgeless graphs
  • link-cut tree

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup. Optimal decremental connectivity in non-sparse graphs. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), pages 6:1-6:17, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Google Scholar
  2. Nishita Agarwal, Naveen Garg, and Swati Gupta. A 4/3-approximation for TSP on cubic 3-edge-connected graphs. Operations Research Letters, 46(4):393-396, 2018. Google Scholar
  3. Therese Biedl. Linear reductions of maximum matching. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 825-826, USA, 2001. Society for Industrial and Applied Mathematics. Google Scholar
  4. Therese C. Biedl, Prosenjit Bose, Erik D. Demaine, and Anna Lubiw. Efficient algorithms for Petersen’s matching theorem. Journal of Algorithms, 38(1):110-134, 2001. Google Scholar
  5. Sylvia Boyd, René Sitters, Suzanne van der Ster, and Leen Stougie. The traveling salesman problem on cubic and subcubic graphs. Mathematical Programming, 144, July 2011. Google Scholar
  6. Barbora Candráková and Robert Lukot'ka. Cubic TSP - a 1.3-approximation. SIAM J. Discret. Math., 32:2094-2114, June 2015. Google Scholar
  7. Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In FOCS, pages 612-623. IEEE, 2022. Google Scholar
  8. Jose Correa, Omar Larré, and José Soto. TSP tours in cubic graphs: Beyond 4/3. SIAM Journal on Discrete Mathematics, 29:915-939, October 2015. Google Scholar
  9. Krzysztof Diks and Piotr Stańczyk. Perfect matching for biconnected cubic graphs in O(nlog²n) time. In Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav Pokorný, and Bernhard Rumpe, editors, SOFSEM 2010: Theory and Practice of Computer Science, pages 321-333, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. Google Scholar
  10. Zdenek Dvorák, Daniel Král, and Bojan Mohar. Graphic TSP in cubic graphs. In Symposium on Theoretical Aspects of Computer Science, 2017. Google Scholar
  11. Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17, 1965. Google Scholar
  12. Orrin Frink. A proof of Petersen’s theorem. Annals of Mathematics, 27(4):491-493, 1926. Google Scholar
  13. Harold N. Gabow, Haim Kaplan, and Robert E. Tarjan. Unique maximum matching algorithms. Journal of Algorithms, 40(2):159-183, 2001. Google Scholar
  14. David Gamarnik, Moshe Lewenstein, and Maxim Sviridenko. An improved upper bound for the TSP in cubic 3-edge-connected graphs. Operations Research Letters, 33:467-474, September 2005. Google Scholar
  15. Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48(4):723-760, July 2001. Google Scholar
  16. Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log²n) amortized time. In Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 35-52, 2018. Google Scholar
  17. John E. Hopcroft and Richard M. Karp. An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):225-231, 1973. Google Scholar
  18. Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Fully dynamic connectivity in O(log n(log logn)²) amortized expected time. In TheoretiCS, 2023. Google Scholar
  19. Yusuke Kobayashi. A simple algorithm for finding a maximum triangle-free 2-matching in subcubic graphs. Discrete Optimization, 7(4):197-202, 2010. Google Scholar
  20. Anton Kotzig. Z teorie konečných pravidelných grafov tretieho a štvrtého stupňa. Časopis pro pěstování matematiky, 082(1):76-92, 1957. Google Scholar
  21. E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-Interscience, 1985. Google Scholar
  22. S. Micali and V. Vazirani. An O(√|V|⋅ |E|) algorithm for finding maximum matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science, pages 17-27, 1980. Google Scholar
  23. Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elimination. In Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 248-255, November 2004. Google Scholar
  24. Julius Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15:193-220, 1891. Google Scholar
  25. Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of Computer and System Sciences, 26(3):362-391, June 1983. Google Scholar
  26. Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Symposium on the Theory of Computing, 2000. Google Scholar
  27. Anke van Zuylen. Improved approximations for cubic bipartite and cubic TSP. Mathematical Programming, 172:399-413, 2015. Google Scholar
  28. Michael C. Wigal, Youngho Yoo, and Xingxing Yu. Approximating TSP walks in subcubic graphs. J. Comb. Theory, Ser. B, 158:70-104, 2021. Google Scholar
  29. Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Encyclopedia of Algorithms, 2012. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail