Dynamic Embeddings of Dynamic Single-Source Upward Planar Graphs

Authors Ivor van der Hoog , Irene Parada , Eva Rotenberg



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.70.pdf
  • Filesize: 0.97 MB
  • 18 pages

Document Identifiers

Author Details

Ivor van der Hoog
  • Technical University of Denmark, Lyngby, Denmark
Irene Parada
  • Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
Eva Rotenberg
  • Technical University of Denmark, Lyngby, Denmark

Cite AsGet BibTex

Ivor van der Hoog, Irene Parada, and Eva Rotenberg. Dynamic Embeddings of Dynamic Single-Source Upward Planar Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 70:1-70:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.70

Abstract

A directed graph G is upward planar if it admits a planar embedding where each edge is y-monotone. Unlike planarity testing, upward planarity testing is NP-hard except in restricted cases, such as when the graph has the single-source property (i.e., each connected component has one source). In this paper, we present a dynamic data structure for maintaining an upward combinatorial embedding ℰ→(G) of a single-source upward planar graph subject to edge deletions, edge contractions, directed edge insertions across a face, and single-source-preserving vertex splits through specified corners (i.e., the gaps between pairs of consecutive edges that share a vertex and a face). We furthermore support changes to the embedding ℰ→(G) in the form of subgraph flips that mirror or slide the placement of a subgraph that is connected to the rest of the graph via at most two vertices. Updates that are incompatible with the current upward planar embedding are identified and rejected. All update operations are supported as long as the graph remains upward planar. In addition, we support queries that can tell whether two vertices can be connected with a directed edge while the graph remains single-source (we call these uplinkability queries). If a pair of vertices are not uplinkable, we facilitate one-flip-linkable queries: These point to a flip that makes them uplinkable, if any such flip exists. We dynamically maintain a linear-size data structure on G which supports incidence queries between a vertex and a face, and uplinkability queries for vertex pairs. We support all updates and queries in O(log² n) worst-case time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Dynamic graph algorithms
  • Mathematics of computing → Graphs and surfaces
Keywords
  • dynamic graphs
  • data structures
  • computational geometry
  • graph drawing
  • graph algorithms
  • upward planarity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM Transactions on Algorithms, 11(4):32:1-32:42, 2015. URL: https://doi.org/10.1145/2629341.
  2. Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science, 61:175-198, 1988. URL: https://doi.org/10.1016/0304-3975(88)90123-5.
  3. Giuseppe Di Battista and Roberto Tamassia. On-line graph algorithms with SPQR-trees. In Proc. 17th International Colloquium on Automata, Languages and Programming (ICALP), volume 443 of LNCS, pages 598-611. Springer, 1990. URL: https://doi.org/10.1007/BFb0032061.
  4. Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM Journal on Computing, 25(5):956-997, 1996. URL: https://doi.org/10.1137/S0097539794280736.
  5. Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward drawings of triconnected digraphs. Algorithmica, 12(6):476-497, 1994. URL: https://doi.org/10.1007/BF01188716.
  6. Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Optimal upward planarity testing of single-source digraphs. SIAM Journal on Computing, 27(1):132-169, 1998. URL: https://doi.org/10.1137/S0097539794279626.
  7. Guido Brückner, Markus Himmel, and Ignaz Rutter. An SPQR-tree-like embedding representation for upward planarity. In Proc. 27th International Symposium on Graph Drawing and Network Visualization (GD), pages 517-531. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_39.
  8. Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Raftopoulou, and Kirill Simonov. Parameterized algorithms for upward planarity. In Proc. 38th International Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 26:1-26:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SoCG.2022.26.
  9. Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward spirality and upward planarity testing. SIAM Journal on Discrete Mathematics, 23(4):1842-1899, 2009. URL: https://doi.org/10.1137/070696854.
  10. David Eppstein. Dynamic generators of topologically embedded graphs. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 599-608. ACM/SIAM, 2003. URL: https://dl.acm.org/doi/10.5555/644108.644208.
  11. David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based sparsification. I. Planary testing and minimum spanning trees. Journal of Computer and System Sciences, 52(1):3-27, 1996. URL: https://doi.org/10.1006/jcss.1996.0002.
  12. Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing. In Proc. 24th Annual ACM Symposium on Theory of Computing (STOC), pages 495-506. ACM, 1992. URL: https://doi.org/10.1145/129712.129761.
  13. Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear planarity testing. SIAM Journal on Computing, 31(2):601-625, 2001. URL: https://doi.org/10.1137/S0097539794277123.
  14. Monika Rauch Henzinger and Johannes A. La Poutré. Certificates and fast algorithms for biconnectivity in fully-dynamic graphs. In Proc. 3rd Annual European Symposium on Algorithms (ESA), volume 979 of LNCS, pages 171-184. Springer, 1995. URL: https://doi.org/10.1007/3-540-60313-1_142.
  15. Jacob Holm and Eva Rotenberg. Dynamic planar embeddings of dynamic graphs. Theory of Computing Systems, 61(4):1054-1083, 2017. URL: https://doi.org/10.1007/s00224-017-9768-7.
  16. Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polylogarithmic time. In Proc. 52nd Annual ACM-SIGACT Symposium on Theory of Computing (STOC), pages 167-180. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384249.
  17. Jacob Holm and Eva Rotenberg. Worst-case polylog incremental SPQR-trees: Embeddings, planarity, and triconnectivity. In Proc. 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2378-2397. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.146.
  18. John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549-568, 1974. URL: https://doi.org/10.1145/321850.321852.
  19. Michael D. Hutton and Anna Lubiw. Upward planar drawing of single-source acyclic digraphs. SIAM Journal on Computing, 25(2):291-311, 1996. URL: https://doi.org/10.1137/S0097539792235906.
  20. Paul Jungeblut, Laura Merker, and Torsten Ueckerdt. A sublinear bound on the page number of upward planar graphs. In Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 963-978. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.42.
  21. David Kelly. Fundamentals of planar ordered sets. Discrete Mathematics, 63(2-3):197-216, 1987. URL: https://doi.org/10.1016/0012-365X(87)90008-2.
  22. Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending upward planar graph drawings. Computational Geometry, 91:101668, 2020. URL: https://doi.org/10.1016/j.comgeo.2020.101668.
  23. Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Vincenzo Roselli. Upward planar morphs. Algorithmica, 82(10):2985-3017, 2020. URL: https://doi.org/10.1007/s00453-020-00714-6.
  24. Achilleas Papakostas. Upward planarity testing of outerplanar dags. In Proc. DIMACS International Workshop on Graph Drawing (GD), volume 894 of LNCS, pages 298-306. Springer, 1994. URL: https://doi.org/10.1007/3-540-58950-3_385.
  25. Mihai Patrascu. Lower bounds for dynamic connectivity. In Encyclopedia of Algorithms - 2008 Edition. Springer, 2008. URL: https://doi.org/10.1007/978-0-387-30162-4_214.
  26. Mihai Patrascu and Erik D. Demaine. Lower bounds for dynamic connectivity. In Proc. 36th Annual ACM Symposium on Theory of Computing (STOC), pages 546-553. ACM, 2004. URL: https://doi.org/10.1145/1007352.1007435.
  27. C. R. Platt. Planar lattices and planar graphs. Journal of Combinatorial Theory, Series B, 21(1):30-39, 1976. URL: https://doi.org/10.1016/0095-8956(76)90024-1.
  28. Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary version). In Proc. 26th Annual ACM Symposium on Theory of Computing (STOC), pages 706-715. ACM, 1994. URL: https://doi.org/10.1145/195058.195439.
  29. Aimal Rextin and Patrick Healy. Dynamic upward planarity testing of single source embedded digraphs. The Computer Journal, 60(1):45-59, 2017. URL: https://doi.org/10.1093/comjnl/bxw064.
  30. Jeffery R. Westbrook. Fast incremental planarity testing. In Proc. 19th International Colloquium on Automata, Languages and Programming (ICALP), volume 623 of LNCS, pages 342-353. Springer, 1992. URL: https://doi.org/10.1007/3-540-55719-9_86.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail