We present several near-linear algorithms for problems involving visibility over a 1.5-dimensional terrain. Concretely, we have a 1.5-dimensional terrain T, i.e., a bounded x-monotone polygonal path in the plane, with n vertices, and a set P of m points that lie on or above T. The visibility graph VG(P,T) is the graph with P as its vertex set and {(p,q) | p and q are visible to each other} as its edge set. We present algorithms that perform BFS and DFS on VG(P,T), which run in O(nlog n + mlog³(m+n)) time. We also consider three optimization problems, in which P is a set of points on T, and we erect a vertical tower of height h at each p ∈ P. In the first problem, called the reverse shortest path problem, we are given two points s, t ∈ P, and an integer k, and wish to find the smallest height h^* for which VG(P(h^*),T) contains a path from s to t of at most k edges, where P(h^*) is the set of the tips of the towers of height h^* erected at the points of P. In the second problem we wish to find the smallest height h^* for which VG(P(h^*),T) contains a cycle, and in the third problem we wish to find the smallest height h^* for which VG(P(h^*),T) is nonempty; we refer to that problem as "Seeing the most without being seen". We present algorithms for the first two problems that run in O^*((m+n)^{6/5}) time, where the O^*(⋅) notation hides subpolynomial factors. The third problem can be solved by a faster algorithm, which runs in O((n+m)log³ (m+n)) time.
@InProceedings{katz_et_al:LIPIcs.ESA.2024.77, author = {Katz, Matthew J. and Saban, Rachel and Sharir, Micha}, title = {{Near-Linear Algorithms for Visibility Graphs over a 1.5-Dimensional Terrain}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {77:1--77:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.77}, URN = {urn:nbn:de:0030-drops-211482}, doi = {10.4230/LIPIcs.ESA.2024.77}, annote = {Keywords: 1.5-dimensional terrain, visibility, visibility graph, reverse shortest path, parametric search, shrink-and-bifurcate, range searching} }
Feedback for Dagstuhl Publishing