Interaction Automata and the ia2d Interpreter

Authors Stéphane Gimenez, David Obwaller



PDF
Thumbnail PDF

File

LIPIcs.FSCD.2016.35.pdf
  • Filesize: 0.56 MB
  • 11 pages

Document Identifiers

Author Details

Stéphane Gimenez
David Obwaller

Cite AsGet BibTex

Stéphane Gimenez and David Obwaller. Interaction Automata and the ia2d Interpreter. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 35:1-35:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.FSCD.2016.35

Abstract

We introduce interaction automata as a topological model of computation and present the conceptual plane interpreter ia2d. Interaction automata form a refinement of both interaction nets and cellular automata models that combine data deployment, memory management and structured computation mechanisms. Their local structure is inspired from pointer machines and allows an asynchronous spatial distribution of the computation. Our tool can be considered as a proof-of-concept piece of abstract hardware on which functional programs can be run in parallel.
Keywords
  • Interaction nets
  • computation models
  • parallel computation
  • functional programming

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Andrea Asperti, Cecilia Giovannetti, and Andrea Naletto. The bologna optimal higher-order machine. Journal of Functional Programming, 6(6):763-810, 1996. URL: http://dx.doi.org/10.1017/S0956796800001994.
  2. Horatiu Cirstea, Germain Faure, Maribel Fernandez, Ian Mackie, and François-Régis Sinot. From functional programs to interaction nets via the rewriting calculus. Electronic Notes in Theoretical Computer Science, 174(10):39-56, 2007. Google Scholar
  3. Maribel Fernández, Ian Mackie, Shinya Sato, and Matthew Walker. Recursive functions with pattern matching in interaction nets. ENTCS, 253(4):55-71, 2009. URL: http://dx.doi.org/10.1016/j.entcs.2009.10.017.
  4. Stéphane Gimenez. Programmer, calculer et raisonner avec les réseaux de la logique linéaire. PhD thesis, 2009. URL: http://pps.jussieu.fr/~gimenez/these.html.
  5. Stéphane Gimenez. Towards generic inductive constructions in systems of nets. In 13th International Workshop on Termination (WST 2013), page 51, 2013. Google Scholar
  6. Stéphane Gimenez and Georg Moser. The complexity of interaction. In POPL, pages 243-255. ACM, 2016. URL: http://dx.doi.org/10.1145/2837614.2837646.
  7. Abubakar Hassan, Eugen Jiresch, and Shinya Sato. An implementation of nested pattern matching in interaction nets. arXiv preprint arXiv:1003.4562, 2010. Google Scholar
  8. Abubakar Hassan, Ian Mackie, and Shinya Sato. Interaction nets: programming language design and implementation. Electronic Communications of the EASST, 10, 2008. Google Scholar
  9. Abubakar Hassan and Shinya Sato. Interaction nets with nested pattern matching. Electronic Notes in Theoretical Computer Science, 203(1):79-92, 2008. Google Scholar
  10. Eugen Jiresch. Towards a GPU-based implementation of interaction nets. In DCM, pages 41-53, 2014. URL: http://dx.doi.org/10.4204/EPTCS.143.4.
  11. Yves Lafont. Interaction nets. In Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 95-108. ACM, 1989. Google Scholar
  12. Yves Lafont. Interaction combinators. Information and Computation, 137(1):69-101, 1997. URL: http://dx.doi.org/10.1006/inco.1997.2643.
  13. Ugo Dal Lago. A short introduction to implicit computational complexity. In Lectures on Logic and Computation - ESSLLI 2010, ESSLLI 2011, pages 89-109, 2011. URL: http://dx.doi.org/10.1007/978-3-642-31485-8_3.
  14. Sylvain Lippi. Universal hard interaction for clockless computation. Dem Glücklichen schlägt keine Stunde! Fundamenta Informaticae, 91(2):357-394, 2009. URL: http://dx.doi.org/10.3233/FI-2009-0048.
  15. Ian Mackie. Interaction nets for linear logic. Theoretical Computer Science, 247(1-2):83-140, 2000. URL: http://dx.doi.org/10.1016/S0304-3975(00)00198-5.
  16. Ian Mackie. Efficient lambda-evaluation with interaction nets. In RTA, volume 3091 of Lecture Notes in Computer Science, pages 155-169, 2004. URL: http://dx.doi.org/10.1007/b98160.
  17. Ian Mackie and Jorge Sousa Pinto. Encoding linear logic with interaction combinators. Information and Computation, 176(2):153-186, 2002. URL: http://dx.doi.org/10.1006/inco.2002.3163.
  18. Damiano Mazza. Multiport interaction nets and concurrency. In CONCUR, pages 21-35, 2005. URL: http://dx.doi.org/10.1007/11539452_6.
  19. Damiano Mazza. Interaction Nets: Semantics and Concurrent Extensions. PhD thesis, 2006. URL: https://www-lipn.univ-paris13.fr/~mazza/papers/Thesis.pdf.
  20. Jorge Sousa Pinto. Sequential and concurrent abstract machines for interaction nets. In FOSSACS, pages 267-282. Springer-Verlag, 2000. URL: http://dx.doi.org/10.1007/3-540-46432-8_18.
  21. Jorge Sousa Pinto. Parallel evaluation of interaction nets with MPINE. In RTA, pages 353-356, 2001. URL: http://dx.doi.org/10.1007/3-540-45127-7_26.
  22. Jorge Sousa Pinto. Parallel implementation models for the lambda-calculus using the geometry of interaction. In TLCA, pages 385-399, 2001. URL: http://dx.doi.org/0.1007/3-540-45413-6_30.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail