Arithmetic Circuits and the Hadamard Product of Polynomials

Authors Vikraman Arvind, Pushkar S. Joglekar, Srikanth Srinivasan



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2009.2304.pdf
  • Filesize: 217 kB
  • 12 pages

Document Identifiers

Author Details

Vikraman Arvind
Pushkar S. Joglekar
Srikanth Srinivasan

Cite AsGet BibTex

Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic Circuits and the Hadamard Product of Polynomials. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 25-36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2304

Abstract

Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. \begin{itemize} \item[$\bullet$] We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is complete for the logspace counting class $\ceql$, and over fields of characteristic $p$ the problem is in $\ModpL/\Poly$. \item[$\bullet$] We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can be expressed as the Hadamard product of two monotone multilinear formulas of quadratic size. \end{itemize}
Keywords
  • Hadamard product
  • identity testing
  • lower bounds
  • algebraic branching programs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail