Synthesis of Finite-state and Definable Winning Strategies

Author Alexander Rabinovich

Thumbnail PDF


  • Filesize: 126 kB
  • 12 pages

Document Identifiers

Author Details

Alexander Rabinovich

Cite AsGet BibTex

Alexander Rabinovich. Synthesis of Finite-state and Definable Winning Strategies. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 359-370, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Church's Problem asks for the construction of a procedure which, given a logical specification $\varphi$ on sequence pairs, realizes for any input sequence $I$ an output sequence $O$ such that $(I,O)$ satisfies $\varphi$. McNaughton reduced Church's Problem to a problem about two-player$\omega$-games. B\"uchi and Landweber gave a solution for Monadic Second-Order Logic of Order ($\MLO$) specifications in terms of finite-state strategies. We consider two natural generalizations of the Church problem to countable ordinals: the first deals with finite-state strategies; the second deals with $\MLO$-definable strategies. We investigate games of arbitrary countable length and prove the computability of these generalizations of Church's problem.
  • Games of ordinal length
  • Church Synthesis Problem
  • Monadic Logic
  • Composition Method


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail