We study the problem of polynomial identity testing (PIT) for depth $2$ arithmetic circuits over matrix algebra. We show that identity testing of depth $3$ ($\Sigma \Pi \Sigma$) arithmetic circuits over a field $\F$ is polynomial time equivalent to identity testing of depth $2$ ($\Pi \Sigma$) arithmetic circuits over $\mathsf{U}_2(\mathbb{F})$, the algebra of upper-triangular $2\times 2$ matrices with entries from $\F$. Such a connection is a bit surprising since we also show that, as computational models, $\Pi \Sigma$ circuits over $\mathsf{U}_2(\mathbb{F})$ are strictly `weaker' than $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}$. The equivalence further implies that PIT of $\Sigma \Pi \Sigma$ circuits reduces to PIT of width-$2$ commutative \emph{Algebraic Branching Programs}(ABP). Further, we give a deterministic polynomial time identity testing algorithm for a $\Pi \Sigma$ circuit of size $s$ over commutative algebras of dimension $O(\log s/\log\log s)$ over $\F$. Over commutative algebras of dimension $\poly(s)$, we show that identity testing of $\Pi \Sigma$ circuits is at least as hard as that of $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}$.
@InProceedings{saha_et_al:LIPIcs.FSTTCS.2009.2333, author = {Saha, Chandan and Saptharishi, Ramprasad and Saxena, Nitin}, title = {{The Power of Depth 2 Circuits over Algebras}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science}, pages = {371--382}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-13-2}, ISSN = {1868-8969}, year = {2009}, volume = {4}, editor = {Kannan, Ravi and Narayan Kumar, K.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2333}, URN = {urn:nbn:de:0030-drops-23334}, doi = {10.4230/LIPIcs.FSTTCS.2009.2333}, annote = {Keywords: Polynomial identity testing, depth 3 circuits, matrix algebras, local rings} }
Feedback for Dagstuhl Publishing