Generalizing the powerset construction, coalgebraically

Authors Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten

Thumbnail PDF


  • Filesize: 0.48 MB
  • 12 pages

Document Identifiers

Author Details

Alexandra Silva
Filippo Bonchi
Marcello M. Bonsangue
Jan J. M. M. Rutten

Cite AsGet BibTex

Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Generalizing the powerset construction, coalgebraically. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics (LIPIcs), Volume 8, pp. 272-283, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor $F$ determines both the type of systems ($F$-coalgebras) and a notion of behavioral equivalence ($\sim_F$) amongst them. Many types of transition systems and their equivalences can be captured by a functor $F$. For example, for deterministic automata the derived equivalence is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. The powerset construction is a standard method for converting a nondeterministic automaton into an equivalent deterministic one as far as language is concerned. In this paper, we lift the powerset construction on automata to the more general framework of coalgebras with structured state spaces. Examples of applications include partial Mealy machines, (structured) Moore automata, and Rabin probabilistic automata.
  • coalgebra
  • language equivalence
  • bisimilarity
  • powerset construction


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads