Document Open Access Logo

Rainbow Connectivity: Hardness and Tractability

Authors Prabhanjan Ananth, Meghana Nasre, Kanthi K. Sarpatwar



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2011.241.pdf
  • Filesize: 406 kB
  • 11 pages

Document Identifiers

Author Details

Prabhanjan Ananth
Meghana Nasre
Kanthi K. Sarpatwar

Cite AsGet BibTex

Prabhanjan Ananth, Meghana Nasre, and Kanthi K. Sarpatwar. Rainbow Connectivity: Hardness and Tractability. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 13, pp. 241-251, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.241

Abstract

A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such that G is (strongly) rainbow connected. In this paper we study the rainbow connectivity problem and the strong rainbow connectivity problem from a computational point of view. Our main results can be summarised as below: 1) For every fixed k >= 3, it is NP-Complete to decide whether src(G) <= k even when the graph G is bipartite. 2) For every fixed odd k >= 3, it is NP-Complete to decide whether rc(G) <= k. This resolves one of the open problems posed by Chakraborty et al. (J. Comb. Opt., 2011) where they prove the hardness for the even case. 3) The following problem is fixed parameter tractable: Given a graph G, determine the maximum number of pairs of vertices that can be rainbow connected using two colors. 4) For a directed graph G, it is NP-Complete to decide whether rc(G) <= 2.
Keywords
  • Computational Complexity
  • Rainbow Connectivity
  • Graph Theory
  • Fixed Parameter Tractable Algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail