We consider the problem of fair allocation of indivisible goods where we are given a set I of m indivisible resources (items) and a set P of n customers (players) competing for the resources. Each resource j in I has a same value vj > 0 for a subset of customers interested in j and it has no value for other customers. The goal is to find a feasible allocation of the resources to the interested customers such that in the Max-Min scenario (also known as Santa Claus problem) the minimum utility (sum of the resources) received by each of the customers is as high as possible and in the Min-Max case (also known as R||C_max problem), the maximum utility is as low as possible. In this paper we are interested in instances of the problem that admit a PTAS. These instances are not only of theoretical interest but also have practical applications. For the Max-Min allocation problem, we start with instances of the problem that can be viewed as a convex bipartite graph; there exists an ordering of the resources such that each customer is interested (has positive evaluation) in a set of consecutive resources and we demonstrate a PTAS. For the Min-Max allocation problem, we obtain a PTAS for instances in which there is an ordering of the customers (machines) and each resource (job) is adjacent to a consecutive set of customers (machines). Next we show that our method for the Max-Min scenario, can be extended to a broader class of bipartite graphs where the resources can be viewed as a tree and each customer is interested in a sub-tree of a bounded number of leaves of this tree (e.g. a sub-path).
@InProceedings{khodamoradi_et_al:LIPIcs.FSTTCS.2013.461, author = {Khodamoradi, Kamyar and Krishnamurti, Ramesh and Rafiey, Arash and Stamoulis, Georgios}, title = {{PTAS for Ordered Instances of Resource Allocation Problems}}, booktitle = {IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013)}, pages = {461--473}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-64-4}, ISSN = {1868-8969}, year = {2013}, volume = {24}, editor = {Seth, Anil and Vishnoi, Nisheeth K.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2013.461}, URN = {urn:nbn:de:0030-drops-43936}, doi = {10.4230/LIPIcs.FSTTCS.2013.461}, annote = {Keywords: Approximation Algorithms, Convex Bipartite Graphs, Resource Allocation} }
Feedback for Dagstuhl Publishing