Document

# Constructing Small Tree Grammars and Small Circuits for Formulas

## File

LIPIcs.FSTTCS.2014.457.pdf
• Filesize: 480 kB
• 12 pages

## Cite As

Danny Hucke, Markus Lohrey, and Eric Noeth. Constructing Small Tree Grammars and Small Circuits for Formulas. In 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 29, pp. 457-468, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.457

## Abstract

It is shown that every tree of size n over a fixed set of sigma different ranked symbols can be decomposed into O(n/log_sigma(n)) = O((n * log(sigma))/ log(n)) many hierarchically defined pieces. Formally, such a hierarchical decomposition has the form of a straight-line linear context-free tree grammar of size O(n/log_sigma(n)), which can be used as a compressed representation of the input tree. This generalizes an analogous result for strings. Previous grammar-based tree compressors were not analyzed for the worst-case size of the computed grammar, except for the top dag of Bille et al., for which only the weaker upper bound of O(n/log^{0.19}(n)) for unranked and unlabelled trees has been derived. The main result is used to show that every arithmetical formula of size n, in which only m <= n different variables occur, can be transformed (in time O(n * log(n)) into an arithmetical circuit of size O((n * log(m))/log(n)) and depth O(log(n)). This refines a classical result of Brent, according to which an arithmetical formula of size n can be transformed into a logarithmic depth circuit of size O(n).
##### Keywords
• grammar-based compression
• tree compression
• arithmetical circuits

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. T. Akutsu. A bisection algorithm for grammar-based compression of ordered trees. Inf. Process. Lett., 110(18-19):815-820, 2010.
2. V. Arvind, S. Raja, and A. V. Sreejith. On lower bounds for multiplicative circuits and linear circuits in noncommutative domains. In Proc. CSR 2014, volume 8476 of LNCS, pages 65-76. Springer, 2014.
3. P. Bille, I. L. Gørtz, G. M. Landau, and O. Weimann. Tree compression with top trees. In Proc. ICALP (1) 2013, volume 7965 of LNCS, pages 160-171. Springer, 2013.
4. R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201-206, 1974.
5. N. H. Bshouty, R. Cleve, and W. Eberly. Size-depth tradeoffs for algebraic formulas. SIAM J. Comput., 24(4):682-705, 1995.
6. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document trees. Inf. Syst., 33(4-5):456-474, 2008.
7. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554-2576, 2005.
8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, and M. Tommasi. Tree automata techniques and applications. http://tata.gforge.inria.fr.
9. N. de Bruijn. A combinatorial problem. Nederl. Akad. Wet., Proc., 49:758-764, 1946.
10. P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpression problem. J. ACM, 27(4):758-771, 1980.
11. P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations on the common subexpression problem. In Proc. ICALP 1990, volume 443 of LNCS, pages 220-234. Springer, 1990.
12. L. Gasieniec, R. M. Kolpakov, I. Potapov, and P. Sant. Real-time traversal in grammar-based compressed files. In Proc. DCC 2005, page 458. IEEE Computer Society, 2005.
13. M. A. Heap and M. R. Mercer. Least upper bounds on OBDD sizes. IEEE Trans. Computers, 43(6):764-767, 1994.
14. D. Hucke, M. Lohrey, and E. Noeth. Constructing small tree grammars and small circuits for formulas. arXiv.org, http://arxiv.org/abs/1407.4286, 2014.
15. A. Jėz and M. Lohrey. Approximation of smallest linear tree grammars. In Proc. STACS 2014, volume 25 of LIPIcs, pages 445-457. Leibniz-Zentrum für Informatik, 2014.
16. J. C. Kieffer and E.-H. Yang. Grammar-based codes: A new class of universal lossless source codes. IEEE Trans. Inf. Theory, 46(3):737-754, 2000.
17. J. C. Kieffer, E.-H. Yang, G. J. Nelson, and P. C. Cosman. Universal lossless compression via multilevel pattern matching. IEEE Trans.Inf. Theory, 46(4):1227-1245, 2000.
18. D. E. Knuth. The Art of Computer Programming, Vol. I: Fundamental Algorithms. Addison-Wesley, 1968.
19. P. M. Lewis II, R. E. Stearns, and J. Hartmanis. Memory bounds for recognition of context-free and context-sensitive languages. In Proc. 6th Annual IEEE Symp. Switching Circuit Theory and Logic Design, pages 191-202, 1965.
20. H.-T. Liaw and C.-S. Lin. On the OBDD-representation of general boolean functions. IEEE Trans. Computers, 41(6):661-664, 1992.
21. M. Lohrey. Traversing grammar-compressed trees with constant delay. http://www.eti.uni-siegen.de/ti/veroeffentlichungen/14-traversal.pdf.
22. M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology, 4(2):241-299, 2012.
23. M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair. Inf. Syst., 38(8):1150-1167, 2013.
24. M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata evaluation for grammar-compressed trees. J. Comput. Syst. Sci., 78(5):1651-1669, 2012.
25. W. L. Ruzzo. Tree-size bounded alternation. J. Comput. Syst. Sci., 21:218-235, 1980.
26. P. M. Spira. On time-hardware complexity tradeoffs for boolean functions. In Proc. 4th Hawaii Symp. on System Sciences, pages 525-527, 1971.
27. J. Zhang, E.-H. Yang, and J. C. Kieffer. A universal grammar-based code for lossless compression of binary trees. IEEE Trans. Inf. Theory, 60(3):1373-1386, 2014.
X

Feedback for Dagstuhl Publishing