For a graph G(V,E) and a vertex s in V, a weighting scheme (w : E -> N) is called a min-unique (resp. max-unique) weighting scheme, if for any vertex v of the graph G, there is a unique path of minimum (resp. maximum) weight from s to v. Instead, if the number of paths of minimum (resp. maximum) weight is bounded by n^c for some constant c, then the weighting scheme is called a min-poly (resp. max-poly) weighting scheme. In this paper, we propose an unambiguous non-deterministic log-space (UL) algorithm for the problem of testing reachability in layered directed acyclic graphs (DAGs) augmented with a min-poly weighting scheme. This improves the result due to Reinhardt and Allender [Reinhardt/Allender, SIAM J. Comp., 2000] where a UL algorithm was given for the case when the weighting scheme is min-unique. Our main technique is a triple inductive counting, which generalizes the techniques of [Immermann, Siam J. Comp.,1988; Szelepcsényi, Acta Inf.,1988] and [Reinhardt/Allender, SIAM J. Comp., 2000], combined with a hashing technique due to [Fredman et al.,J. ACM, 1984] (also used in [Garvin et al., Comp. Compl.,2014]). We combine this with a complementary unambiguous verification method, to give the desired UL algorithm. At the other end of the spectrum, we propose a UL algorithm for testing reachability in layered DAGs augmented with max-poly weighting schemes. To achieve this, we first reduce reachability in DAGs to the longest path problem for DAGs with a unique source, such that the reduction also preserves the max-poly property of the graph. Using our techniques, we generalize the double inductive counting method in [Limaye et al., CATS, 2009] where UL algorithms were given for the longest path problem on DAGs with a unique sink and augmented with a max-unique weighting scheme. An important consequence of our results is that, to show NL = UL, it suffices to design log-space computable min-poly (or max-poly) weighting schemes for DAGs.
@InProceedings{dhayal_et_al:LIPIcs.FSTTCS.2014.597, author = {Dhayal, Anant and Sarma, Jayalal and Sawlani, Saurabh}, title = {{Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space}}, booktitle = {34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014)}, pages = {597--609}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-77-4}, ISSN = {1868-8969}, year = {2014}, volume = {29}, editor = {Raman, Venkatesh and Suresh, S. P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2014.597}, URN = {urn:nbn:de:0030-drops-48744}, doi = {10.4230/LIPIcs.FSTTCS.2014.597}, annote = {Keywords: Reachability Problem, Space Complexity, Unambiguous Algorithms} }
Feedback for Dagstuhl Publishing